索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]梅嘉伦,张长青,高俊杰.线粒体DNA甲基化在骨骼系统中的作用机制[J].国际骨科学杂志,2024,02:131-135.
点击复制

线粒体DNA甲基化在骨骼系统中的作用机制(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2024年02期
页码:
131-135
栏目:
综述
出版日期:
2024-03-25

文章信息/Info

Title:
-
作者:
梅嘉伦张长青高俊杰
200233,? 上海交通大学医学院附属第六人民医院骨科、显微外科研究所
Author(s):
-
关键词:
线粒体基因甲基化骨骼系统线粒体骨发育骨代谢
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2024.02.012
文献标识码:
-
摘要:
线粒体作为细胞内最关键的能量代谢细胞器,可在通过氧化磷酸化(OXPHOS)生成三磷酸腺苷(ATP)、调控细胞凋亡和维持钙平衡等方面发挥重要作用,而线粒体DNA(mtDNA)可深度调控线粒体基本功能。mtDNA也可受到精准调控,其甲基化是一种重要的表观遗传机制。近年来越来越多的研究表明,mtDNA的表观遗传学修饰可参与多种骨骼系统疾病的发生与发展。该文将从饮食、代谢、发育衰老等多个维度探讨mtDNA甲基化对骨骼系统的潜在影响,为未来预防和个性化治疗骨骼系统疾病提供新方向。
Abstract:
-

参考文献/References

[1] Greaves LC, Reeve AK, Taylor RW, et al. Mitochondrial DNA and disease[J]. J Pathol, 2012, 226(2): 274-286.
[2] Gorman GS, Chinnery PF, DiMauro S, et al. Mitochondrial diseases[J]. Nat Rev Dis Primers, 2016, 2: 16080.
[3] Nicholls TJ, Minczuk M. In D-loop: 40 years of mitochondrial 7S DNA[J]. Exp Gerontol, 2014, 56: 175-181.
[4] Zeng Z, Zhou X, Wang Y, et al. Mitophagy-a new target of bone disease[J]. Biomolecules, 2022, 12(10): 1420.
[5] Yan C, Shi Y, Yuan L, et al. Mitochondrial quality control and its role in osteoporosis[J]. Front Endocrinol (Lausanne), 2023, 14: 1077058.
[6] Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective[J]. Trends Genet, 2022, 38(7): 676-707.
[7] Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration[J]. Free Radic Biol Med, 2021, 170: 19-33.
[8] Moore LD, Le T, Fan G. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38(1): 23-38.
[9] Angeloni A, Bogdanovic O. Enhancer DNA methylation: implications for gene regulation[J]. Essays Biochem, 2019, 63(6): 707-715.
[10] Ramasamy D, Deva Magendhra Rao AK, Rajkumar T, et al. Non-CpG methylation-a key epigenetic modification in cancer[J]. Brief Funct Genomics, 2021, 20(5): 304-311.
[11] Shmookler Reis RJ, Goldstein S. Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation[J]. J Biol Chem, 1983, 258(15): 9078-9085.
[12] Ghosh S, Singh KK, Sengupta S, et al. Mitoepigenetics: the different shades of grey[J]. Mitochondrion, 2015, 25: 60-66.
[13] Chen K, Lu P, Beeraka NM, et al. Mitochondrial mutations and mitoepigenetics: focus on regulation of oxidative stress-induced responses in breast cancers[J]. Semin Cancer Biol, 2022, 83: 556-569.
[14] Rebelo AP, Williams SL, Moraes CT. In vivo methylation of mtDNA reveals the dynamics of protein-mtDNA interactions[J]. Nucleic Acids Res, 2009, 37(20): 6701-6715.
[15] Saini SK, Mangalhara KC, Prakasam G, et al. DNA Methyltransferase1 (DNMT1) Isoform3 methylates mitochondrial genome and modulates its biology[J]. Sci Rep, 2017, 7(1): 1525.[16] Bellizzi D, D'Aquila P, Scafone T, et al. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern[J]. DNA Res, 2013, 20(6): 537-547.
[17] Bianchessi V, Vinci MC, Nigro P, et al. Methylation profiling by bisulfite sequencing analysis of the mtDNA non-coding region in replicative and senescent endothelial cells[J]. Mitochondrion, 2016, 27: 40-47.
[18] van der Wijst MG, van Tilburg AY, Ruiters MH, et al. Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression[J]. Sci Rep, 2017, 7(1): 177.
[19] Gao J, Wen S, Zhou H, et al. De-methylation of displacement loop of mitochondrial DNA is associated with increased mitochondrial copy number and nicotinamide adenine dinucleotide subunit 2 expression in colorectal cancer[J]. Mol Med Rep, 2015, 12(5): 7033-7038.
[20] Shock LS, Thakkar PV, Peterson EJ, et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria[J]. Proc Natl Acad Sci U S A, 2011, 108(9):3630-3635.
[21] Wong M, Gertz B, Chestnut BA, et al. Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS[J]. Front Cell Neurosci, 2013, 7: 279.
[22] Dou X, Boyd-Kirkup JD, McDermott J, et al. The strand-biased mitochondrial DNA methylome and its regulation by DNMT3A[J]. Genome Res, 2019, 29(10): 1622-1634.
[23] Chestnut BA, Chang Q, Price A, et al. Epigenetic regulation of motor neuron cell death through DNA methylation[J]. J Neurosci, 2011, 31(46): 16619-16636.
[24] Yue Y, Ren L, Zhang C, et al. Mitochondrial genome undergoes de novo DNA methylation that protects mtDNA against oxidative damage during the peri-implantation window[J]. Proc Natl Acad Sci U S A, 2022, 119(30): e2201168119.
[25] Lin XJ, Xu XX, Zhang HX, et al. Placental mtDNA copy number and methylation in association with macrosomia in healthy pregnancy[J]. Placenta, 2022, 118: 1-9.
[26] Yu D, Du Z, Pian L, et al. Mitochondrial DNA hypomethylation is a biomarker associated with induced senescence in human fetal heart mesenchymal stem cells[J]. Stem Cells Int, 2017, 2017: 1764549.
[27] Sun X, Wang Z, Cong X, et al. Mitochondrial gene COX2 methylation and downregulation is a biomarker of aging in heart mesenchymal stem cells[J]. Int J Mol Med, 2021, 47(1): 161-170.
[28] D'Aquila P, Giordano M, Montesanto A, et al. Age-and gender-related pattern of methylation in the MT-RNR1 gene[J]. Epigenomics, 2015, 7(5): 707-716.
[29] Mawlood SK, Dennany L, Watson N, et al. Quantification of global mitochondrial DNA methylation levels and inverse correlation with age at two CpG sites[J]. Aging (Albany NY), 2016, 8(4): 636-641.
[30] Liao K, Yan J, Mai K, et al. Dietary olive and perilla oils affect liver mitochondrial DNA methylation in large yellow croakers[J]. J Nutr, 2015, 145(11): 2479-2485.
[31] Zhang Z, Zhang Z, Pei L, et al. How high-fat diet affects bone in mice: a systematic review and meta-analysis[J]. Obes Rev, 2022, 23(10): e13493.
[32] Ali D, Figeac F, Caci A, et al. High-fat diet-induced obesity augments the deleterious effects of estrogen deficiency on bone: evidence from ovariectomized mice[J]. Aging Cell, 2022, 21(12): e13726.
[33] Yamazaki M, Munetsuna E, Yamada H, et al. Fructose consumption induces hypomethylation of hepatic mitochondrial DNA in rats[J]. Life Sci, 2016, 149: 146-152.
[34] Zheng LD, Linarelli LE, Liu L, et al. Insulin resistance is associated with epigenetic and genetic regulation of mitochondrial DNA in obese humans[J]. Clin Epigenetics, 2015, 7(1): 60.
[35] Koos B, Moderegger EL, Rump K, et al. LPS-induced endotoxemia evokes epigenetic alterations in mitochondrial DNA that impacts inflammatory response[J]. Cells, 2020, 9(10): 2282.
[36] Janssen BG, Byun HM, Roels HA, et al. Regulating role of fetal thyroid hormones on placental mitochondrial DNA methylation:epidemiological evidence from the ENVIRONAGE birth cohort study[J]. Clin Epigenetics, 2017, 9: 66.
[37] Zheng LD, Linarelli LE, Brooke J, et al. Mitochondrial epigenetic changes link to increased diabetes risk and early-stage prediabetes indicator[J]. Oxid Med Cell Longev, 2016, 2016: 5290638.
[38] Kowluru RA. Retinopathy in a diet-induced Type 2 diabetic rat model and role of epigenetic modifications[J]. Diabetes, 2020, 69(4): 689-698.
[39] Beaupere C, Liboz A, Fève B, et al. Molecular mechanisms of glucocorticoid-induced insulin resistance[J]. Int J Mol Sci, 2021, 22(2): 623.
[40] Liu Z, Tian J, Peng F, et al. Hypermethylation of mitochondrial DNA facilitates bone metastasis of renal cell carcinoma[J]. J Cancer, 2022, 13(1): 304-312.
[41] Sun X, Vaghjiani V, Jayasekara WSN, et al. The degree of mitochondrial DNA methylation in tumor models of glioblastoma and osteosarcoma[J]. Clin Epigenetics, 2018, 10(1): 157.
[42] Baccarelli AA, Byun HM. Platelet mitochondrial DNA methylation:a potential new marker of cardiovascular disease[J]. Clin Epigenetics, 2015, 7(1): 44.
[43] Corsi S, Iodice S, Vigna L, et al. Platelet mitochondrial DNA methylation predicts future cardiovascular outcome in adults with overweight and obesity[J]. Clin Epigenetics, 2020, 12(1): 29.
[44] Wan QQ, Qin WP, Ma YX, et al. Crosstalk between bone and nerves within bone[J]. Adv Sci (Weinh), 2021, 8(7): 2003390.
[45] Stoccoro A, Mosca L, Carnicelli V, et al. Mitochondrial DNA copy number and D-loop region methylation in carriers of amyotrophic lateral sclerosis gene mutations[J]. Epigenomics, 2018, 10(11): 1431-1443.
[46] Stoccoro A, Smith AR, Mosca L, et al. Reduced mitochondrial D-loop methylation levels in sporadic amyotrophic lateral sclerosis[J]. Clin Epigenetics, 2020, 12(1): 137.
[47] Blanch M, Mosquera JL, Ansoleaga B, et al. Altered mitochondrial DNA methylation pattern in Alzheimer disease-related pathology and in Parkinson disease[J]. Am J Pathol, 2016, 186(2): 385-397.
[48] Stoccoro A, Siciliano G, Migliore L, et al. Decreased methylation of the mitochondrial D-loop region in late-onset Alzheimer's disease[J]. J Alzheimers Dis, 2017, 59(2): 559-564
[49] Xu Y, Xu L, Han M, et al. Altered mitochondrial DNA methylation and mitochondrial DNA copy number in an APP/PS1 transgenic mouse model of Alzheimer disease[J]. Biochem Biophys Res Commun, 2019, 520(1): 41-46.
[50] Xu Y, Cheng L, Sun J, et al. Hypermethylation of mitochondrial cytochrome b and cytochrome c oxidase Ⅱ genes with decreased mitochondrial DNA copy numbers in the APP/PS1 transgenic mouse model of Alzheimer's disease[J]. Neurochem Res, 2021, 46(3): 564-572.
[51] Sironi F, De Marchi F, Mazzini L, et al. Cell therapy in ALS: an update on preclinical and clinical studies[J]. Brain Res Bull, 2023, 194: 64-81.
[52] LLabre JE, Gil C, Amatya N, et al. Degradation of bone quality in a transgenic mouse model of Alzheimer's disease[J]. J Bone Miner Res, 2022, 37(12): 2548-2565.

备注/Memo

备注/Memo:
通信作者:高俊杰? E-mail: colingjj@163.com
? ? ? ? ? 张长青 ?E-mail: zhangcq@sjtu.edu.cn
更新日期/Last Update: 2024-03-25