索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]周健,高俊杰,张长青.线粒体转移与骨和软骨[J].国际骨科学杂志,2024,02:127-130.
点击复制

线粒体转移与骨和软骨(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2024年02期
页码:
127-130
栏目:
综述
出版日期:
2024-03-25

文章信息/Info

Title:
-
作者:
周健高俊杰张长青
200233,? 上海交通大学医学院附属第六人民医院骨科、显微外科研究所
Author(s):
-
关键词:
线粒体转移软骨
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2024.02.011
文献标识码:
-
摘要:
线粒体不但可以通过合成三磷酸腺苷(ATP)为细胞提供能量,而且能够参与调控产生活性氧(ROS)、传递细胞信号、诱导免疫反应等细胞生理过程。线粒体功能障碍会导致多种疾病发生。近年来,学者们发现线粒体可以通过间隙连接等多种方式进行细胞间转移,从而改善受体细胞的线粒体缺陷,并恢复其生物学功能。多项研究均证实,线粒体移植可用于多种疾病治疗。在骨关节系统疾病中,骨关节炎等多种退行性病变均与线粒体功能障碍密切相关,而线粒体移植有望成为治疗疾病的新方法。该文将对线粒体转移途径、线粒体转移效果及线粒体转移与骨和软骨的关系
Abstract:
-

参考文献/References

[1] Chakrabarty RP, Chandel NS. Beyond ATP, new roles of mitochondria[J]. Biochem (Lond), 2022, 44(4): 2-8.
[2] van der Vlist M, Raoof R, Willemen HLDM, et al. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain[J]. Neuron, 2022, 110(4): 613-626.e9.
[3] Mishra M, Raik S, Rattan V, et al. Mitochondria transfer as a potential therapeutic mechanism in Alzheimer's disease-like pathology[J]. Brain Res, 2023, 1819: 148544.
[4] Lampe PD, Laird DW. Recent advances in connexin gap junction biology[J]. Fac Rev, 2022, 11: 14.
[5] Yang J, Liu L, Oda Y, et al. Extracellular vesicles and Cx43-Gap junction channels are the main routes for mitochondrial transfer from ultra-purified mesenchymal stem cells, RECs[J]. Int J Mol Sci, 2023, 24(12): 10294.
[6] Norris RP. Transfer of mitochondria and endosomes between cells by gap junction internalization[J]. Traffic, 2021, 22(6): 174-179.
[7] Rustom A, Saffrich R, Markovic I, et al. Nanotubular highways for intercellular organelle transport[J]. Science, 2004, 303(5660): 1007-1010.
[8] Taiarol L, Formicola B, Fagioli S, et al. The 3.0 cell communication:new insights in the usefulness of tunneling nanotubes for glioblastoma treatment[J]. Cancers (Basel), 2021, 13(16): 4001.
[9] Ariazi J, Benowitz A, De Biasi V, et al. Tunneling nanotubes and gap junctions-their role in long-range intercellular communication during development, health, and disease conditions[J]. Front Mol Neurosci, 2017, 10: 333.
[10] Lock JT, Parker I, Smith IF. Communication of Ca(2+) signals via tunneling membrane nanotubes is mediated by transmission of inositol trisphosphate through gap junctions[J]. Cell Calcium, 2016, 60(4): 266-272.
[11] Chakraborty R, Nonaka T, Hasegawa M, et al. Tunnelling nanotubes between neuronal and microglial cells allow bi-directional transfer of α-Synuclein and mitochondria[J]. Cell Death Dis, 2023, 14(5): 329.
[12] Haimovich G, Dasgupta S, Gerst JE. RNA transfer through tunneling nanotubes[J]. Biochem Soc Trans, 2021, 49(1): 145-160.
[13] Yao S, Pang M, Wang Y, et al. Mesenchymal stem cell attenuates spinal cord injury by inhibiting mitochondrial quality control-associated neuronal ferroptosis[J]. Redox Biol, 2023, 67: 102871.
[14] Nakhle J, Khattar K, ?zkan T, et al. Mitochondria transfer from mesenchymal stem cells confers chemoresistance to glioblastoma stem cells through metabolic rewiring[J]. Cancer Res Commun, 2023, 3(6): 1041-1056.
[15] Lu M, Guo J, Wu B, et al. Mesenchymal stem cell-mediated mitochondrial transfer: a therapeutic approach for ischemic stroke[J]. Transl Stroke Res, 2021, 12(2): 212-229.
[16] Chang WH, Cerione RA, Antonyak MA. Extracellular vesicles and their roles in cancer progression[J]. Methods Mol Biol, 2021, 2174:143-170.
[17] Peruzzotti-Jametti L, Bernstock JD, Willis CM, et al. Neural stem cells traffic functional mitochondria via extracellular vesicles[J]. PLoS Biol, 2021, 19(4): e3001166.
[18] Ikeda G, Santoso MR, Tada Y, et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium[J]. J Am Coll Cardiol, 2021, 77(8): 1073-1088.
[19] Hou X, Tian F. STAT3-mediated osteogenesis and osteoclastogenesis in osteoporosis[J]. Cell Commun Signal, 2022, 20(1): 112.
[20] Singh AK, Prasad P, Cancelas JA. Mesenchymal stromal cells, metabolism, and mitochondrial transfer in bone marrow normal and malignant hematopoiesis[J]. Front Cell Dev Biol, 2023, 11: 1325291.
[21] Ly CH, Lynch GS, Ryall JG. A metabolic roadmap for somatic stem cell fate[J]. Cell Metab, 2020, 31(6): 1052-1067.
[22] Chen CT, Shih YR, Kuo TK, et al. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells[J]. Stem Cells, 2008, 26(4): 960-968.
[23] Cai W, Zhang J, Yu Y, et al. Mitochondrial transfer regulates cell fate through metabolic remodeling in osteoporosis[J]. Adv Sci (Weinh), 2023, 10(4): e2204871.
[24] Suh J, Kim NK, Shim W, et al. Mitochondrial fragmentation and donut formation enhance mitochondrial secretion to promote osteogenesis[J]. Cell Metab, 2023, 35(2): 345-360.e7.
[25] Guo Y, Chi X, Wang Y, et al. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing[J]. Stem Cell Res Ther, 2020, 11(1): 245.
[26] Islam MN, Das SR, Emin MT, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury[J]. Nat Med, 2012, 18(5): 759-765.
[27] Bi Y, Guo X, Zhang M, et al. Bone marrow derived-mesenchymal stem cell improves diabetes-associated fatty liver via mitochondria transformation in mice[J]. Stem Cell Res Ther, 2021, 12(1): 602.
[28] Yang F, Zhang Y, Liu S, et al. Tunneling nanotube-mediated mitochondrial transfer rescues nucleus pulposus cells from mitochondrial dysfunction and apoptosis[J]. Oxid Med Cell Longev, 2022, 2022: 3613319.
[29] Li H, Wang C, He T, et al. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction[J]. Theranostics, 2019, 9(7): 2017-2035.
[30] Shum LC, White NS, Nadtochiy SM, et al. Cyclophilin D knock-out mice show enhanced resistance to osteoporosis and to metabolic changes observed in aging bone[J]. PLoS One, 2016, 11(5):e0155709.
[31] Gao J, Qin A, Liu D, et al. Endoplasmic reticulum mediates mitochondrial transfer within the osteocyte dendritic network[J]. Sci Adv, 2019, 5(11): eaaw7215.
[32] Liu D, Cai ZJ, Yang YT, et al. Mitochondrial quality control in cartilage damage and osteoarthritis: new insights and potential therapeutic targets[J]. Osteoarthritis Cartilage, 2022, 30(3): 395-405.
[33] Dilley JE, Bello MA, Roman N, et al. Post-traumatic osteoarthritis: a review of pathogenic mechanisms and novel targets for mitigation[J]. Bone Rep, 2023, 18: 101658.
[34] Ba?enková D, Trebuňová M, Demeterová J, et al. Human chondrocytes, metabolism of articular cartilage, and strategies for application to tissue engineering[J]. Int J Mol Sci, 2023, 24(23):17096.
[35] Fahey M, Bennett M, Thomas M, et al. Mesenchymal stromal cells donate mitochondria to articular chondrocytes exposed to mitochondrial, environmental, and mechanical stress[J]. Sci Rep, 2022, 12(1): 21525.
[36] Thomas MA, Fahey MJ, Pugliese BR, et al. Human mesenchymal stromal cells release functional mitochondria in extracellular vesicles[J]. Front Bioeng Biotechnol, 2022, 10: 870193.
[37] Wang R, Maimaitijuma T, Ma YY, et al. Mitochondrial transfer from bone-marrow-derived mesenchymal stromal cells to chondrocytes protects against cartilage degenerative mitochondrial dysfunction in rats chondrocytes[J]. Chin Med J (Engl), 2020, 134(2): 212-218.
[38] Yu M, Wang D, Chen X, et al. BMSCs-derived mitochondria improve osteoarthritis by ameliorating mitochondrial dysfunction and promoting mitochondrial biogenesis in chondrocytes[J]. Stem Cell Rev Rep, 2022, 18(8): 3092-3111.
[39] Chen J, Zhong J, Wang LL, et al. Mitochondrial transfer in cardiovascular disease: from mechanisms to therapeutic implications[J]. Front Cardiovasc Med, 2021, 8: 771298.
[40] Burtscher J, Millet GP, Place N, et al. The muscle-brain axis and neurodegenerative diseases: the key role of mitochondria in exercise-induced neuroprotection[J]. Int J Mol Sci, 2021, 22(12): 6479.
[41] Mistry JJ, Marlein CR, Moore JA, et al. ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection[J] . Proc Natl Acad Sci U S A, 2019, 116(49): 24610-24619.
[42] Huang T, Lin R, Su Y, et al. Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis[J]. Nat Commun, 2023, 14(1): 5781.
[43] Yamada Y, Ito M, Arai M, et al. Challenges in promoting mitochondrial transplantation therapy[J]. Int J Mol Sci, 2020, 21(17):6365.
[44] Urbani A, Prosdocimi E, Carrer A, et al. Mitochondrial ion channels of the inner membrane and their regulation in cell death signaling[J]. Front Cell Dev Biol, 2021, 8: 620081.
[45] Dadsena S, Jenner A, García-Sáez AJ. Mitochondrial outer membrane permeabilization at the single molecule level[J]. Cell Mol Life Sci, 2021, 78(8): 3777-3790.
[46] Greiff D, Myers M. Effect of dimethyl sulphoxide on the cryo-tolerance of mitochondria[J]. Nature, 1961, 190: 1202-1204.
[47] Yamaguchi R, Andreyev A, Murphy AN, et al. Mitochondria frozen with trehalose retain a number of biological functions and preserve outer membrane integrity[J]. Cell Death Differ, 2007, 14(3): 616-624.
[48] Ulger O, Kubat GB. Therapeutic applications of mitochondrial transplantation[J]. Biochimie, 2022, 195: 1-15.
[49] Bertero E, O'Rourke B, Maack C. Mitochondria do not survive calcium overload during transplantation[J]. Circ Res, 2020, 126(6):784-786.
[50] Lin L, Xu H, Bishawi M, et al. Circulating mitochondria in organ donors promote allograft rejection[J]. Am J Transplant, 2019, 19(7):1917-1929.
[51] Giwa R, Brestoff JR. Mitochondria transfer to CD4+ T cells may alleviate rheumatoid arthritis by suppressing pro-inflammatory cytokine production[J]. Immunometabolism, 2022, 4(2): e220009.

备注/Memo

备注/Memo:
通信作者: 高俊杰? E-mail: colingjj@163.com
? ? ? ? ? 张长青? E-mail: zhangcq@sjtu.edu.cn
更新日期/Last Update: 2024-03-25