索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]李明基,朱禹璇,刘鈊逸,等.生物膜休眠菌及其靶向治疗研究进展[J].国际骨科学杂志,2024,02:123-126.
点击复制

生物膜休眠菌及其靶向治疗研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2024年02期
页码:
123-126
栏目:
综述
出版日期:
2024-03-25

文章信息/Info

Title:
-
作者:
李明基朱禹璇刘鈊逸罗颀颢杨浩宇刘铁鑫林俊卿郑宪友
200025,? 上海交通大学医学院(李明基、朱禹璇、刘鈊逸、罗颀颢、杨浩宇);200233? 上海,? 国家骨科医学中心(刘铁鑫、林俊卿、郑宪友);200233,? 上海交通大学医学院附属第六人民医院骨科?(刘铁鑫、林俊卿、郑宪友)
Author(s):
-
关键词:
生物膜休眠菌靶向治疗耐药性
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2024.02.010
文献标识码:
-
摘要:
随着抗生素的广泛使用,细菌耐药性问题日益突出。生物膜形成是导致耐药菌不断增加的重要因素,休眠菌是生物膜中一种具有特殊表型的细菌,可导致慢性和复发性感染,由于其来源多样、耐药机制复杂,目前尚无有效治疗措施,探索休眠菌靶向疗法具有重要临床价值。该文就生物膜休眠菌及其靶向治疗研究进展进行综述。
Abstract:
-

参考文献/References

[1] Sousa A, Phung AN, ?kalko-Basnet N, et al. Smart delivery systems for microbial biofilm therapy: dissecting design, drug release and toxicological features[J]. J Control Release, 2023, 354: 394-416.
[2] Habash M, Reid G. Microbial biofilms: their development and significance for medical device—related infections[J]. J Clin Pharmacol, 1999, 39(9): 887-898.
[3] Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections[J]. J Chin Med Assoc, 2018, 81(1): 7-11.
[4] Modi SK, Gaur S, Sengupta M, et al. Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance[J]. Front Microbiol, 2023, 14: 1135579.
[5] Balaban NQ, Helaine S, Lewis K, et al. Definitions and guidelines for research on antibiotic persistence[J]. Nat Rev Microbiol, 2019, 17(7):441-448.
[6] Keren I, Kaldalu N, Spoering A, et al. Persister cells and tolerance to antimicrobials[J]. FEMS Microbiol Lett, 2004, 230(1): 13-18.
[7] Goode O, Smith A, Zarkan A, et al. Persister Escherichia coli cells have a lower intracellular pH than susceptible cells but maintain their pH in response to antibiotic treatment[J]. MBio, 2021, 12(4):10.1128/mbio. 00909-21.
[8] Zou J, Peng B, Qu J, et al. Are bacterial persisters dormant cells only?[J]. Front Microbiol, 2022, 12: 4206.
[9] Ruiz CH, Osorio-Llanes E, Trespalacios MH, et al. Quorum sensing regulation as a target for antimicrobial therapy[J]. Mini Rev Med Chem, 2022, 22(6): 848-864.
[10] Harms A, Maisonneuve E, Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure[J]. Science, 2016, 354(6318): aaf4268.
[11] Ge C, Sheng H, Chen X, et al. Quorum sensing system used as a tool in metabolic engineering[J]. Biotechnol J, 2020, 15(6): 1900360.
[12] Dawson E, ?im?ek E, Kim M. Observing bacterial persistence at single-cell resolution[J]. Methods Mol Biol, 2021: 85-93.
[13] Kaldalu N, Hauryliuk V, Turnbull KJ, et al. In vitro studies of persister cells[J]. Microbiol Mol Biol Rev, 2020, 84(4): e00070-20.
[14] Gerdes K, B?rentsen R, Brodersen DE. Phylogeny reveals novel HipA-homologous kinase families and toxin-antitoxin gene organizations[J]. MBio, 2021, 12(3): 10.1128/mbio. 01058-21.[15] Hicks ND, Yang J, Zhang X, et al. Clinically prevalent mutations in Mycobacterium tuberculosis alter propionate metabolism and mediate multidrug tolerance[J]. Nat Microbiol,2018, 3(9): 1032-1042.
[16] Alav I, Sutton JM, Rahman KM. Role of bacterial efflux pumps in biofilm formation[J]. J AntimicrobChemother, 2018, 73(8): 2003-2020.
[17] Cameron DR, Shan Y, Zalis EA, et al. A genetic determinant of persister cell formation in bacterial pathogens[J]. J Bacteriol, 2018, 200(17): e00303-18.
[18] Wang Y, Yu Z, Ding P, et al. Antidepressants can induce mutation and enhance persistence toward multiple antibiotics[J]. Proc Natl Acad Sci, 2023, 120(5): e2208344120.
[19] Kouhsari E, Kaviar VH, Asadi A, et al. Bacterial persister cells:mechanisms of formation, control, and eradication[J]. Infect Disord Drug Targets, 2023, 23(7):17-28.
[20] LeRoux M, Laub MT. Toxin-antitoxin systems as phage defense elements[J]. Annu Rev Microbiol, 2022, 76: 21-43.
[21] Singh G, Yadav M, Ghosh C, et al. Bacterial toxin-antitoxin modules:classification, functions, and association with persistence[J]. Curr Res Microb Sci, 2021, 2: 100047.
[22] Edelmann D, Berghoff BA. A shift in perspective: a role for the type I toxin TisB as persistence-stabilizing factor[J]. Front Microbiol, 2022, 13: 871699.
[23] Edelmann D, Leinberger FH, Schmid NE, et al. Elevated expression of toxin TisB protects persister cells against ciprofloxacin but enhances susceptibility to mitomycin C[J]. Microorganisms, 2021, 9(5): 943.
[24] Sonika S, Singh S, Mishra S, et al. Toxin-antitoxin systems in bacterial pathogenesis[J]. Heliyon, 2023, 9(4): e14220.
[25] Huang L, Wu C, Gao H, et al. Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: an overview[J]. Antibiotics, 2022, 11(4): 520.
[26] Azimi S, Klementiev AD, Whiteley M, et al. Bacterial quorum sensing during infection[J]. Annu Rev Microbiol, 2020, 74: 201-219.
[27] Liu L, Zeng X, Zheng J, et al. AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: a review[J]. Microbiol Res, 2022: 127102.
[28] Li Y, Feng T, Wang Y. The role of bacterial signaling networks in antibiotics response and resistance regulation[J]. Mar Life Sci Technol, 2022, 4(2): 163-178.
[29] Fan Q, Wang H, Mao C, et al. Structure and signal regulation mechanism of interspecies and Interkingdom quorum sensing system receptors[J]. J Agri Food Chem, 2022, 70(2): 429-445.
[30] Deng Z, Hou K, Valencak TG, et al. AI-2/LuxS quorum sensing system promotes biofilm formation of lactobacillus rhamnosus GG and enhances the resistance to enterotoxigenic escherichia coli in germ-free zebrafish[J]. Microbiology Spectrum, 2022, 10(4): e00610-22.
[31] Wang Y, Liu B, Grenier D, et al. Regulatory mechanisms of the LuxS/AI-2 system and bacterial resistance[J]. Antimicrob Agents Chemother, 2019, 63(10): 10.1128/aac. 01186-19.
[32] Nishino K, Yamasaki S, Nakashima R, et al. Function and inhibitory mechanisms of multidrug efflux pumps[J]. Front Microbiol, 2021, 12:737288.
[33] Lv B, Bian M, Huang X, et al. n-Butanol potentiates subinhibitory aminoglycosides against bacterial persisters and multidrug-resistant MRSA by rapidly enhancing antibiotic uptake[J]. ACS Infect Dis, 2022, 8(2): 373-386.
[34] Hassan MT, van der Lelie D, Springael D, et al. Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa[J]. Gene, 1999, 238(2): 417-425.
[35] Wood TK. Strategies for combating persister cell and biofilm infections[J]. MicrobBiotechnol, 2017, 10(5): 1054-1056.
[36] Conlon BP, Nakayasu ES, Fleck LE, et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection[J]. Nature, 2013, 503(7476): 365-370.
[37] Chowdhury N, Wood TL, Martínez-Vázquez M, et al. DNA-crosslinker cisplatin eradicates bacterial persister cells[J]. Biotechnol Bioeng, 2016, 113(9), 1984–1992.
[38] Kwan BW, Chowdhury N, Wood TK. Combatting bacterial infections by killing persister cells with mitomycin C[J]. Environ Microbiol, 2015, 17(11): 4406-4414.
[39] Kalita S, Kandimalla R, Bhowal AC, et al. Functionalization of β-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening[J]. Sci Rep, 2018, 8(1):5778.
[40] Jin X, Zhou J, Richey G, et al. Undecanoic acid, lauric acid, and N-tridecanoic acid inhibit Escherichia coli persistence and biofilm formation[J]. J Microbiol Biotechnol, 2021, 31(1): 130.
[41] Kitzenberg DA, Lee JS, Mills KB, et al. Adenosine awakens metabolism to enhance growth-independent killing of tolerant and persister bacteria across multiple classes of antibiotics[J]. Mbio, 2022, 13(3): e00480-22.
[42] Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides[J]. Nature, 2011, 473(7346): 216-220.
[43] Zhang SP, Feng HZ, Wang Q, et al. Bacterial type II toxin-antitoxin systems acting through post-translational modifications[J]. Comp Struct Biotechnol J, 2021, 19: 86-93.

备注/Memo

备注/Memo:
基金项目: 上海市科学技术委员会“科技创新行动计划”生物医药支撑专项(21S11909100)、上海交通大学医工交叉研究基金(YG2022ZD017)、?上海交通大学医学院大学生创新性训练计划(1723X014)
通信作者:郑宪友? E-mail : zhengxianyou@126.com
更新日期/Last Update: 2024-03-25