索引超出了数组界限。
[1] Matsen FA 3rd. Clinical practice. Rotator-cuff failure[J]. N Engl J Med, 2008, 358(20): 2138-2147.
[2] van Baak K, Aerni G. Shoulder conditions: rotator cuff injuries and bursitis[J]. FP Essent, 2020, 491: 11-16.
[3] Zhao J, Luo M, Liang G, et al. Risk factors for supraspinatus tears: a meta-analysis of observational studies[J]. Orthop J Sports Med, 2021, 9(10): 23259671211042826.
[4] Karjalainen TV, Jain NB, Heikkinen J, et al. Surgery for rotator cuff tears[J]. Cochrane Database Syst Rev, 2019, 12(12): CD013502.
[5] Kim C, Lee YJ, Kim SJ, et al. Bone marrow stimulation in arthroscopic repair for large to massive rotator cuff tears with incomplete footprint coverage[J]. Am J Sports Med, 2020, 48(13): 3322-3327.
[6] Longo UG, Carnevale A, Piergentili I, et al. Retear rates after rotator cuff surgery: a systematic review and meta-analysis[J]. BMC Musculoskelet Disord, 2021, 22(1): 749.
[7] Le BT, Wu XL, Lam PH, et al. Factors predicting rotator cuff retears:an analysis of 1000 consecutive rotator cuff repairs[J]. Am J Sports Med, 2014, 42(5): 1134-1142.
[8] Dimatteo R, Darling NJ, Segura T. In situ forming injectable hydrogels for drug delivery and wound repair[J]. Adv Drug Deliv Rev, 2018, 127: 167-184.
[9] Narayanaswamy R, Torchilin VP. Hydrogels and their applications in targeted drug delivery[J]. Molecules, 2019, 24(3): 603.
[10] Hajimiri M, Shahverdi S, Kamalinia G, et al. Growth factor conjugation: strategies and applications[J]. J Biomed Mater Res A, 2015, 103(2): 819-838.
[11] Novais A, Chatzopoulou E, Chaussain C, et al. The potential of FGF-2 in craniofacial bone tissue engineering: a review[J]. Cells, 2021, 10(4): 932.
[12] Tokunaga T, Shukunami C, Okamoto N, et al. FGF-2 stimulates the growth of tenogenic progenitor cells to facilitate the generation of tenomodulin-positive tenocytes in a rat rotator cuff healing model[J]. Am J Sports Med, 2015, 43(10): 2411-2422.
[13] Reker D, Kjelgaard-Petersen CF, Siebuhr AS, et al. Sprifermin (rhFGF18) modulates extracellular matrix turnover in cartilage explants ex vivo[J]. J Transl Med, 2017, 15(1): 250.
[14] Sennett ML, Meloni GR, Farran AJE, et al. Sprifermin treatment enhances cartilage integration in an in vitro repair model[J]. J Orthop Res, 2018, 36(10): 2648-2656.
[15] Zhou Z, Song W, Zhang G, et al. The recombinant human fibroblast growth factor-18 (sprifermin) improves tendon-to-bone healing by promoting chondrogenesis in a rat rotator cuff repair model[J]. J Shoulder Elbow Surg, 2022, 31(8): 1617-1627.
[16] Sharara FI, Lelea LL, Rahman S, et al. A narrative review of platelet-rich plasma (PRP) in reproductive medicine[J]. J Assist Reprod Genet, 2021, 38(5): 1003-1012.
[17] Kurosawa T, Yamaura K, Mukohara S, et al. Combined therapy of platelet-rich plasma and basic fibroblast growth factor using gelatin-hydrogel sheet for rotator cuff healing in rat models[J]. J Orthop Surg Res, 2021, 16(1): 605.
[18] Lodyga M, Hinz B. TGF-β1: a truly transforming growth factor in fibrosis and immunity[J]. Semin Cell Dev Biol, 2020, 101: 123-139.
[19] Arimura H, Shukunami C, Tokunaga T, et al. TGF-β1 improves biomechanical strength by extracellular matrix accumulation without increasing the number of tenogenic lineage cells in a rat rotator cuff repair model[J]. Am J Sports Med, 2017, 45(10): 2394-2404.
[20] Bolam SM, Zhu MF, Lim KS, et al. Combined growth factor hydrogel enhances rotator cuff enthesis healing in rat but not sheep model[J]. Tissue Eng Part A, 2023, 29(15-16): 449-459.
[21] Bi Z, Shi X, Liao S, et al. Strategies of immobilizing BMP-2 with 3D-printed scaffolds to improve osteogenesis[J]. Regen Med, 2023, 18(5): 425-441.
[22] Chen CH, Chang CH, Wang KC, et al. Enhancement of rotator cuff tendon-bone healing with injectable periosteum progenitor cells-BMP-2 hydrogel in vivo[J]. Knee Surg Sports Traumatol Arthrosc, 2011, 19(9): 1597-1607.
[23] Zhao Z, Li G, Ruan H, et al. Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration[J]. ACS Nano, 2021, 15(8): 13041-13054.
[24] Yang R, Li G, Zhuang C, et al. Gradient bimetallic ion-based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion[J]. Sci Adv, 2021, 7(26): eabg3816.
[25] Chen B, Liang Y, Zhang J, et al. Synergistic enhancement of tendon-to-bone healing via anti-inflammatory and pro-differentiation effects caused by sustained release of Mg2+/curcumin from injectable self-healing hydrogels[J]. Theranostics, 2021, 11(12): 5911-5925.
[26] Ku CM, Lin JY. Farnesol, a sesquiterpene alcohol in herbal plants, exerts anti-inflammatory and antiallergic effects on ovalbumin-sensitized and -challenged asthmatic mice[J]. Evi Based Complement Alternat Med, 2015, 2015: 387357.
[27] Lin YH, Lee SI, Lin FH, et al. Enhancement of rotator cuff healing with farnesol-impregnated gellan gum/hyaluronic acid hydrogel membranes in a rabbit model[J]. Pharmaceutic, 2021, 13(7): 944.[28] Chen YR, Yan X, Yuan FZ, et al. Kartogenin-conjugated double-network hydrogel combined with stem cell transplantation and tracing for cartilage repair[J]. Adv Sci (Weinh), 2022, 9(35): e2105571.
[29] Huang C, Zhang X, Luo H, et al. Effect of kartogenin-loaded gelatin methacryloyl hydrogel scaffold with bone marrow stimulation for enthesis healing in rotator cuff repair[J]. J Shoulder Elbow Surg, 2021, 30(3): 544-553.
[30] Ma Y, Lin M, Huang G, et al. 3D spatiotemporal mechanical microenvironment: a hydrogel-based platform for guiding stem cell fate[J]. Adv Mater, 2018, 30(49): e1705911.
[31] Kaizawa Y, Franklin A, Leyden J, et al. Augmentation of chronic rotator cuff healing using adipose-derived stem cell-seeded human tendon-derived hydrogel[J]. J Orthop Res, 2019, 37(4): 877-886.
[32] Oda H, Kaizawa Y, Franklin A, et al. Assessment of a synergistic effect of platelet-rich plasma and stem cell-seeded hydrogel for healing of rat chronic rotator cuff injuries[J]. Cell Transplant, 2023, 32: 9636897231190174.
[33] Rothrauff BB, Smith CA, Ferrer GA, et al. The effect of adipose-derived stem cells on enthesis healing after repair of acute and chronic massive rotator cuff tears in rats[J]. J Shoulder Elbow Surg, 2019, 28(4): 654-664.
[34] Han Z, Deng L, Chen S, et al. Zn2+-Loaded adhesive bacterial cellulose hydrogel with angiogenic and antibacterial abilities for accelerating wound healing[J]. Burns Trauma, 2023, [Epub ahead of print].
[35] Kharaziha M, Baidya A, Annabi N. Rational design of immunomodulatory hydrogels for chronic wound healing[J]. Adv Mater, 2021, 33(39): e2100176.
[36] Kaizawa Y, Leyden J, Behn AW, et al. Human tendon-derived collagen hydrogel significantly improves biomechanical properties of the tendon-bone interface in a chronic rotator cuff injury model[J]. J Hand Surg Am, 2019, 44(10): 899.e1-899.e11.
[37] Jiang X, Wu S, Kuss M, et al. 3D printing of multilayered scaffolds for rotator cuff tendon regeneration[J]. Bioact Mater, 2020, 5(3): 636-643.
[38] Ji W, Han F, Feng X, et al. Cocktail-like gradient gelatin/hyaluronic acid bioimplant for enhancing tendon-bone healing in fatty-infiltrated rotator cuff injury models[J]. Int J Biol Macromol, 2023, 244:125421.