索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]殷翰林,邓国英,赵庆华.干细胞移植前处理治疗椎间盘退行性病变研究进展[J].国际骨科学杂志,2017,05:299-302.
点击复制

干细胞移植前处理治疗椎间盘退行性病变研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2017年05期
页码:
299-302
栏目:
综述
出版日期:
2017-09-20

文章信息/Info

Title:
-
作者:
殷翰林邓国英赵庆华
201620, 上海交通大学附属第一人民医院骨科
Author(s):
-
关键词:
椎间盘退行性病变 干细胞移植 前处理
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2017.05.006
文献标识码:
A
摘要:
椎间盘退行性病变的治疗方案主要侧重于缓解疼痛症状,但无法阻止退行性病变进程。基于此,干细胞移植治疗成为该领域的研究热点,其中干细胞移植前处理对治疗效果起决定性作用。目前移植前处理方法包括髓核细胞共培养、生长因子处理、低氧处理、转染、组织工程复合体及力学刺激。髓核细胞共培养可促进干细胞向髓核细胞表型分化; 生长因子种类及浓度可调控干细胞的生长、分化; 低氧环境前处理可显著增强干细胞的抗逆境能力; 基因转染可有效调节干细胞分化,并增强其旁分泌能力; 组织工程复合体可改善微环境,从而有利于维持干细胞活性; 力学刺激可正性调控骨髓间充质干细胞的软骨样分化。该文就干细胞移植前处理治疗椎间盘退行性病变研究进展作一综述。
Abstract:
-

参考文献/References

[1] Sun W, Zhang K, Liu G, et al. Sox9 gene transfer enhanced regenerative effect of bone marrow mesenchymal stem cells on the degenerated intervertebral disc in a rabbit model[J]. PLoS One, 2014, 9(4):e93570.
[2] Mascarinas A, Harrison J, Boachie-Adjei K, et al. Regenerative treatments for spinal conditions[J]. Phys Med Rehabil Clin N Am, 2016, 27(4):1003-1017.
[3] Yang SH, Wu CC, Shih TT, et al. In vitro study on interaction between human nucleus pulposus cells and mesenchymal stem cells through paracrine stimulation[J]. Spine(Phila Pa 1976), 2008, 33(18):1951-1957.
[4] Cao C, Zou J, Liu X, et al. Bone marrow mesenchymal stem cells slow intervertebral disc degeneration through the NF-κB pathway[J]. Spine J, 2015, 15(3):530-538.
[5] Wang F, Shi R, Cai F, et al. Stem cell approaches to intervertebral disc regeneration: obstacles from the disc microenvironment[J]. Stem Cells Dev, 2015, 24(21):2479-2495.
[6] Hu JQ, Yan Q, Shi CG, et al. BMSC paracrine activity attenuates interleukin-1 beta-induced inflammation and apoptosis in rat AF cells via inhibiting relative NF-kappa B signaling and the mitochondrial pathway[J]. Am J Transl Res, 2017, 9(1):79-89.
[7] Morigele M, Shao Z, Zhang Z, et al. TGF-β1 induces a nucleus pulposus-like phenotype in Notch 1 knockdown rabbit bone marrow mesenchymal stem cells[J]. Cell Biol Int, 2013, 37(8):820-825.
[8] Cui X, Liu M, Wang J, et al. Electrospun scaffold containing TGF-β1 promotes human mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype under hypoxia[J]. IET Nanobiotechnol, 2015, 9(2):76-84.
[9] Liang CZ, Li H, Tao YQ, et al. Dual release of dexamethasone and TGF-β3 from polymeric microspheres for stem cell matrix accumulation in a rat disc degeneration model[J]. Acta Biomater, 2013, 9(12):9423-9433.
[10] Tao Y, Zhou X, Liang C, et al. TGF-β3 and IGF-1 synergy ameliorates nucleus pulposus mesenchymal stem cell differentiation towards the nucleus pulposus cell type through MAPK/ERK signaling[J]. Growth Factors, 2015, 33(5/6):326-336.
[11] Clarke LE, McConnell JC, Sherratt MJ, et al. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs[J]. Arthritis Res Ther, 2014, 16(2):R67.
[12] Ehlicke F, Freimark D, Heil B, et al. Intervertebral disc regeneration: influence of growth factors on differentiation of human mesenchymal stem cells(hMSC)[J]. Int J Artif Organs, 2010, 33(4):244-252.
[13] Steinert AF, Proffen B, Kunz M, et al. Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer[J]. Arthritis Res Ther, 2009, 11(5):R148.
[14] Naqvi SM, Buckley CT. Bone marrow stem cells in response to intervertebral Disc-Like matrix acidity and Oxygen concentration: implications for cell-based regenerative therapy[J]. Spine(Phila Pa 1976), 2016, 41(9):743-750.
[15] Li C, Guo Z, Guo B, et al. Inhibition of the endogenous CSE/H2S system contributes to hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells[J]. Mol Med Rep, 2014, 9(6):2467-2472.
[16] Das R, Jahr H, van Osch GJ, et al. The role of hypoxia in bone marrow-derived mesenchymal stem cells: considerations for regenerative medicine approaches[J]. Tissue Eng Part B Rev, 2010, 16(2):159-168.
[17] Naqvi SM, Buckley CT. Extracellular matrix production by nucleus pulposus and bone marrow stem cells in response to altered Oxygen and glucose microenvironments[J]. J Anat, 2015, 227(6):757-766.
[18] Ni L, Liu X, Sochacki KR, et al. Effects of hypoxia on differentiation from human placenta-derived mesenchymal stem cells to nucleus pulposus-like cells[J]. Spine J, 2014, 14(10):2451-2458.
[19] Cao L, Yang F, Liu G, et al. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells[J]. Biomaterials, 2011, 32(16):3910-3920.
[20] Lee JM, Im GI. SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat[J]. Biomaterials, 2012, 33(7):2016-2024.
[21] Fang Z, Yang Q, Luo W, et al. Differentiation of GFP-Bcl-2-engineered mesenchymal stem cells towards a nucleus pulposus-like phenotype under hypoxia in vitro[J]. Biochem Biophys Res Commun, 2013, 432(3):444-450.
[22] Chen HT, Huang AB, He YL, et al. Wnt11 overexpression promote adipose-derived stem cells differentiating to the nucleus pulposus-like phenotype[J]. Eur Rev Med Pharmacol Sci, 2017, 21(7):1462-1470.
[23] Lolli A, Narcisi R, Lambertini E, et al. Silencing of antichondrogenic MicroRNA-221 in human mesenchymal stem cells promotes cartilage repair in vivo[J]. Stem Cells, 2016, 34(7):1801-1811.
[24] Vadalà G, Russo F, Di Martino A, et al. Intervertebral disc regeneration: from the degenerative cascade to molecular therapy and tissue engineering[J]. J Tissue Eng Regen Med, 2015, 9(6):679-690.
[25] Ganey T, Hutton WC, Moseley T, et al. Intervertebral disc repair using adipose tissue-derived stem and regenerative cells: experiments in a canine model[J]. Spine(Phila Pa 1976), 2009, 34(21):2297-2304.
[26] Ouyang A, Cerchiari AE, Tang X, et al. Effects of cell type and configuration on anabolic and catabolic activity in 3D co-culture of mesenchymal stem cells and nucleus pulposus cells[J]. J Orthop Res, 2017, 35(1):61-73.
[27] Sun Z, Luo B, Liu ZH, et al. Adipose-derived stromal cells protect intervertebral disc cells in compression: implications for stem cell regenerative disc therapy[J]. Int J Biol Sci, 2015, 11(2):133-143.
[28] Dai J, Wang H, Liu G, et al. Dynamic compression and co-culture with nucleus pulposus cells promotes proliferation and differentiation of adipose-derived mesenchymal stem cells[J]. J Biomech, 2014, 47(5):966-972.
[29] Le HQ, Ghatak S, Yeung CY, et al. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment[J]. Nat Cell Biol, 2016, 18(8):864-875.
[30] Liu Y, Rahaman MN, Bal BS. Modulating notochordal differentiation of human induced pluripotent stem cells using natural nucleus pulposus tissue matrix[J]. PLoS One, 2014, 9(7):e100885.
[31] Liu K, Chen Z, Luo XW, et al. Determination of the potential of induced pluripotent stem cells to differentiate into mouse nucleus pulposus cells in vitro[J]. Genet Mol Res, 2015, 14(4):12394-12405.
[32] Chen X, Zhu L, Wu G, et al. A comparison between nucleus pulposus-derived stem cell transplantation and nucleus pulposus cell transplantation for the treatment of intervertebral disc degeneration in a rabbit model[J]. Int J Surg, 2016, 28:77-82.

备注/Memo

备注/Memo:
基金项目: 上海市浦江人才计划项目资助基金(16PJD040)、上海交通大学“医工交叉基金”项目(YG2016MS19)
通信作者: 赵庆华 E-mail: sawboneszhao@163.com
更新日期/Last Update: 2017-09-20