Index was outside the bounds of the array. 文章摘要
|本期目录/Table of Contents|

[1]蔡高锐,刘威,何勇,等.纳米生物材料在骨组织工程中的应用[J].国际骨科学杂志,2017,05:303-306.
点击复制

纳米生物材料在骨组织工程中的应用(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2017年05期
页码:
303-306
栏目:
综述
出版日期:
2017-09-20

文章信息/Info

Title:
-
作者:
蔡高锐刘威何勇王大平
518000, 深圳大学第一附属医院运动医学科(蔡高锐、何勇、王大平); 518000, 深圳市组织工程重点实验室(蔡高锐、刘威、何勇、王大平); 518000, 深圳大学第一附属医院创伤骨科(刘威)
Author(s):
-
关键词:
骨组织工程 纳米材料 生物材料 支架
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2017.05.007
文献标识码:
A
摘要:
作为骨组织工程的要素之一,三维支架扮演着至关重要的角色。适宜的支架能模仿细胞生长的微环境,为细胞的增殖以及新骨生长提供具有良好生物相容性的三维结构。由于具有良好的生物特性,纳米生物材料成为制备骨组织工程三维支架的理想材料。各种纳米生物材料如纳米复合材料、纳米纤维材料、纳米生物活性材料和可注射性纳米材料被合成并应用于骨组织工程的研究中,呈现出广阔的应用前景。该文对近年来纳米生物材料在骨组织工程中的应用作一综述。
Abstract:
-

参考文献/References

[1] Yi H, Ur Rehman F, Zhao C, et al. Recent advances in nano scaffolds for bone repair[J]. Bone Res, 2016, 4:16050.
[2] Balasundaram G, Storey DM, Webster TJ. Novel nano-rough polymers for cartilage tissue engineering[J]. Int J Nanomedicine, 2014, 9:1845-1853.
[3] 杨毅,毕鑫,李多玉,等. 人工骨材料修复骨缺损:多种复合后的生物学与力学特征[J]. 中国组织工程研究, 2014, 18(16):2582-2587.
[4] Liu L, Li R, Zhang L, et al. Mechanical properties of hyaluronic acid modifying chitosan/collagen/nano-hydroxyapatite composite scaffold and its effect on osteoblast proliferation[J]. Chin J Tissue Eng Clin Heal, 2011, 15(38):7127-7131.
[5] 刘鹏,王东,孙海钰,等. 胶原-纳米羟基磷灰石复合支架的细胞相容性[J]. 中国组织工程研究, 2011, 15(42):7831-7834.
[6] 叶鹏,马立坤,黄文良,等. 骨组织工程三维复合支架修复兔桡骨骨缺损[J]. 中国组织工程研究, 2014, 18(3):383-388.
[7] Sharma C, Dinda AK, Potdar PD, et al. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2016, 64:416-427.
[8] Sheikh FA, Ju HW, Moon BM, et al. Hybrid scaffolds based on PLGA and silk for bone tissue engineering[J]. J Tissue Eng Regen Med, 2016, 10(3):209-221.
[9] Jiang L, Li Y, Xiong C, et al. Preparation and properties of bamboo fiber/nano-hydroxyapatite/poly(lactic-co-glycolic)composite scaffold for bone tissue engineering[J]. ACS Appl Mater Interfaces, 2017, 9(5):4890-4897
[10] Kavya KC, Dixit R, Jayakumar R, et al. Synthesis and characterization of chitosan/chondroitin sulfate/nano-SiO2 composite scaffold for bone tissue engineering[J]. J Biomed Nanotechnol, 2012, 8(1):149-160.
[11] Lee JH, Shin YC, Lee SM, et al. Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites[J]. Sci Rep, 2015, 15:18833
[12] Du B, Liu W, Deng Y, et al. Angiogenesis and bone regeneration of porous nano-hydroxyapatite/coralline blocks coated with rhVEGF165 in critical-size alveolar bone defects in vivo[J]. Int J Nanomedicine, 2015, 10:2555-2565.
[13] 叶荣,张晓峰,严怀宁,等. 羟基丁酸-羟基戊酸纳米纤维材料修复胫骨缺损[J]. 中国组织工程研究, 2012, 16(34):6284-6288.
[14] Ao C, Niu Y, Zhang X, et al. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering[J]. Int J Biol Macromol, 2017, 97:568-573.
[15] Yao Q, Cosme JG, Xu T, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation[J]. Biomaterials, 2017, 115:115-127.
[16] Bramhill J, Ross S, Ross G. Bioactive nanocomposites for tissue repair and regeneration: a review[J]. Int J Environ Res Public Health, 2017, 14(1):E 66.
[17] Kwak S, Haider A, Gupta KC, et al. Micro/Nano multilayered scaffolds of PLGA and collagen by alternately electrospinning for bone tissue engineering[J]. Nanoscale Res Lett, 2016, 11(1):323
[18] Kikuchi M. Hydroxyapatite/collagen bone-like nanocomposite[J]. Biol Pharm Bull, 2013, 36(11):1666-1669
[19] Khanna R, Katti KS, Katti DR. Bone nodules on chitosan-polygalacturonic acid-hydroxyapatite nanocomposite films mimic hierarchy of natural bone[J]. Acta Biomater, 2011, 7(3):1173-1183.
[20] Rajzer I, Menaszek E, Kwiatkowski R, et al. Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering[J]. J Mater Sci Mater Med, 2014, 25(5):1239-1247.
[21] Bakhtiyari SS, Karbasi S, Monshi AA. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering[J]. J Mater Sci Mater Med, 2016, 27(1):2.
[22] Roohani-Esfahani SI, Nouri-Khorasani S, Lu ZF, et al. Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds[J]. Acta Biomater, 2011, 7(3):1307-1318.
[23] He X, Dziak R, Mao K, et al. Integration of a novel injectable nano calcium sulfate/alginate scaffold and BMP2 gene-modified mesenchymal stem cells for bone regeneration[J]. Tissue Eng Part A, 2013, 19(3/4):508-518.
[24] 薛震,牛丽媛,安刚,等. 纳米羟基磷灰石/壳聚糖/半水硫酸钙为可注射骨组织工程支架材料的可行性[J]. 中国组织工程研究, 2015, 19(8):1160-1164.
[25] Qi X, Li H, Qiao B, et al. Development and characterization of an injectable cement of nano calcium-deficient hydroxyapatite/multi(amino acid)copolymer/calcium sulfate hemihydrate for bone repair[J]. Int J Nanomedicine, 2013, 8(8):4441-4452.
[26] Liu J, Mao K, Liu Z, et al. Injectable biocomposites for bone healing in rabbit femoral condyle defects[J]. PloS one, 2013, 8(10):e75668.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金(81572198)、广东省自然科学基金(2015A030313772)、深圳市科技计划项目(JCYJ20160425104858256、CXZZ20140813160132596)、深圳市卫生计生系统博士创新项目(201605006)
通信作者: 王大平 E-mail: dapingwang1963@qq.com
更新日期/Last Update: 2017-09-20