索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]鲁灵凤,宁迩玉,张绘莉,等.关节软骨厚度影像学测量研究进展[J].国际骨科学杂志,2024,02:109-113.
点击复制

关节软骨厚度影像学测量研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2024年02期
页码:
109-113
栏目:
综述
出版日期:
2024-03-25

文章信息/Info

Title:
-
作者:
鲁灵凤宁迩玉张绘莉周静马冰杨兴郝跃峰
215008,? 南京医科大学附属苏州医院骨科与运动医学中心(鲁灵凤、宁迩玉、张绘莉、周静、杨兴、郝跃峰)、超声科(马冰)
Author(s):
-
关键词:
骨关节炎软骨厚度影像学测量关节退变
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2024.02.007
文献标识码:
-
摘要:
关节软骨退化及损伤是骨关节炎的核心病理表现,而软骨厚度变化与骨关节炎发病和进展密切相关。近期有众多研究通过X线、CT、磁共振成像(MRI)、超声等多种影像学检查对骨关节炎软骨厚度进行直接或间接测量,用于检测骨关节炎软骨退变程度并监测骨关节炎治疗效果。随着影像学检查技术的进步,关节软骨厚度测量的准确性及敏感性均得到显著提高。该文对影像学检查在关节软骨厚度测量中的研究进展进行综述。
Abstract:
-

参考文献/References

[1] Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.
[2] Cotofana S, Buck R, Wirth W, et al. Cartilage thickening in early radiographic knee osteoarthritis: a within-person, between-knee comparison[J]. Arthritis Care Res (Hoboken), 2012, 64(11): 1681-1690.
[3] Buck RJ, Wyman BT, Le Graverand MP, et al. Osteoarthritis may not be a one-way-road of cartilage loss: comparison of spatial patterns of cartilage change between osteoarthritic and healthy knees[J]. Osteoarthritis Cartilage, 2010, 18(3): 329-335.
[4] Pane RV, Setiyaningsih R, Widodo G, et al. Femoral cartilage thickness in knee osteoarthritis patients and healthy adults: an ultrasound measurement comparison[J]. Scientific World J, 2023, 2023: 3942802.
[5] Miyamura S, Oka K, Sakai T, et al. Cartilage wear patterns in severe osteoarthritis of the trapeziometacarpal joint: a quantitative analysis[J]. Osteoarthritis Cartilage, 2019, 27(8): 1152-1162.
[6] Hartlev LB, Klose-Jensen R, Thomsen JS, et al. Thickness of the bone-cartilage unit in relation to osteoarthritis severity in the human hip joint[J]. RMD Open, 2018, 4(2): e000747.
[7] Eschweiler J, Horn N, Rath B, et al. The biomechanics of cartilage:an overview[J]. Life (Basel), 2021, 11(4): 302.
[8] Wu XD, Wu D, Huang W, et al. Relation between cartilage loss and pain in knee osteoarthritis[J]. Ann Rheum Dis, 2022, 81(7): e127.
[9] Roemer FW, Guermazi A, Demehri S, et al. Imaging in osteoarthritis[J]. Osteoarthritis Cartilage, 2022, 30(7): 913-934.
[10] Wirth W, Hunter DJ, Nevitt MC, et al. Predictive and concurrent validity of cartilage thickness change as a marker of knee osteoarthritis progression: data from the Osteoarthritis Initiative[J]. Osteoarthritis Cartilage, 2017, 25(12): 2063-2071.
[11] Everhart JS, Abouljoud MM, Kirven JC, et al. Full-thickness cartilage defects are important independent predictive factors for progression to total knee arthroplasty in older adults with minimal to moderate osteoarthritis: data from the Osteoarthritis Initiative[J]. J Bone Joint Surg Am, 2019, 101(1): 56-63.
[12] Rapagna S, Roberts BC, Solomon LB, et al. Tibial cartilage, subchondral bone plate and trabecular bone microarchitecture in varus- and valgus-osteoarthritis versus controls[J]. J Orthop Res, 2021, 39(9): 1988-1999.
[13] Rapagna S, Roberts BC, Solomon LB, et al. Relationships between tibial articular cartilage, in vivo external joint moments and static alignment in end-stage knee osteoarthritis: a micro-CT study[J]. J Orthop Res, 2022, 40(5): 1125-1134.
[14] Nolte T, Westfechtel S, Schock J, et al. Getting cartilage thickness measurements right: a systematic inter-method comparison using MRI data from the Osteoarthritis Initiative[J]. Cartilage, 2023, 14(1):26-38.
[15] Lisee C, McGrath ML, Kuenze C, et al. Reliability of a novel semiautomated ultrasound segmentation technique for assessing average regional femoral articular cartilage thickness[J]. J Sport Rehabil, 2020, 29(7): 1042-1046.
[16] Turmezei TD, Low SB, Rupret S, et al. Quantitative three-dimensional assessment of knee joint space width from weight-bearing CT[J]. Radiology, 2021, 299(3): 649-659.
[17] Segal NA, Murphy MT, Everist BM, et al. Clinical value of weight-bearing CT and radiographs for detecting patellofemoral cartilage visualized by MRI in the MOST study[J]. Osteoarthritis Cartilage, 2021, 29(11): 1540-1548.
[18] Jansen MP, Mastbergen SC, Eckstein F, et al. Comparison between 2D radiographic weight-bearing joint space width and 3D MRI non-weight-bearing cartilage thickness measures in the knee using non-weight-bearing 2D and 3D CT as an intermediary[J]. Ther Adv Chronic Dis, 2021, 12: 20406223211037868.
[19] Chappard C, Abascal J, Olivier C, et al. Virtual monoenergetic images from photon-counting spectral computed tomography to assess knee osteoarthritis[J]. Eur Radiol Exp, 2022, 6(1): 10.
[20] Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: recent advances and challenges[J]. Bioact Mater, 2021, 6(12): 4830-4855.
[21] Gao J, Xu X, Yu X, et al. Quantitatively relating magnetic resonance T(1) and T(2) to glycosaminoglycan and collagen concentrations mediated by penetrated contrast agents and biomacromolecule-bound water[J]. Regen Biomater, 2023, 10: rbad035.
[22] Kaplan M, Guclu D, Unlu EN, et al. Shear wave elastography and T2* mapping in the detection of early-stage trochlear cartilage damage[J]. Acta Radiol, 2023, 64(9): 2535-2540.
[23] Wang N, Badar F, Xia Y. Experimental influences in the accurate measurement of cartilage thickness in MRI[J]. Cartilage, 2019, 10(3):278-287.
[24] Sekiya I, Sasaki S, Miura Y, et al. Medial tibial osteophyte width strongly reflects medial meniscus extrusion distance and medial joint space width moderately reflects cartilage thickness in knee radiographs[J]. J Magn Reson Imaging, 2022, 56(3): 824-834.
[25] Bacon K, LaValley MP, Jafarzadeh SR, et al. Does cartilage loss cause pain in osteoarthritis and if so, how much?[J]. Ann Rheum Dis, 2020, 79(8): 1105-1110.
[26] Dório M, Hunter DJ, Collins JE, et al. Association of baseline and change in tibial and femoral cartilage thickness and development of widespread full-thickness cartilage loss in knee osteoarthritis :data from the Osteoarthritis Initiative[J]. Osteoarthritis Cartilage, 2020, 28(6): 811-818.
[27] Erhart-Hledik J, Chu C, Asay J, et al. Longitudinal changes in the total knee joint moment after anterior cruciate ligament reconstruction correlate with cartilage thickness changes[J]. J Orthop Res, 2019, 37(7): 1546-1554.
[28] Roemer FW, Kraines J, Aydemir A, et al. Evaluating the structural effects of intra-articular sprifermin on cartilage and non-cartilaginous tissue alterations, based on sqMRI assessment over 2 years[J]. Osteoarthritis Cartilage, 2020, 28(9): 1229-1234.
[29] Luo S, Cao Y, Hu P, et al. Quantitative evaluation of ankle cartilage in a symptomatic adolescent football players after season by T2-mapping magnetic resonance imaging[J]. Biomed Eng Online, 2021, 20(1): 130.
[30] Karanfil Y, Babayeva N, D?nmez G, et al. Thirty minutes of running exercise decreases T2 signal intensity but not thickness of the knee joint cartilage: a 3.0-t magnetic resonance imaging study[J]. Cartilage, 2019, 10(4): 444-450.
[31] Wang Z, Liang L. Research on quantitative measurement method of articular cartilage thickness change based on MR image[J]. J Infect Public Health, 2020, 13(12): 1993-1996.
[32] Sekiya I, Kohno Y, Hyodo A, et al. Interscan measurement error of knee cartilage thickness and projected cartilage area ratio at 9 regions and 45 subregions by fully automatic three-dimensional MRI analysis[J]. Eur J Radiol, 2021, 139: 109700.
[33] Steppacher SD, Hanke MS, Zurmühle CA, et al. Ultrasonic cartilage thickness measurement is accurate, reproducible, and reliable-validation study using contrast-enhanced micro-CT[J]. J Orthop Surg Res, 2019, 14(1): 67.
[34] Deshmukh S, Durkar S, Kharat A, et al. Evaluation of changes in condylar cartilage thickness using MRI and ultrasound imaging in patients treated by mandibular advancement with myofunctional appliance: an in-vivo pilot study[J]. Cureus, 2021, 13(7): e16338.
[35] Lye TH, Gachouch O, Renner L, et al. Quantitative ultrasound assessment of early osteoarthritis in human articular cartilage using a high-frequency linear array transducer[J]. Ultrasound Med Biol, 2022, 48(8): 1429-1440.
[36] Harkey MS, Michel N, Kuenze C, et al. Validating a semi-automated technique for segmenting femoral articular cartilage on ultrasound images[J]. Cartilage, 2022, 13(2): 19476035221093069.
[37] Desai P, Hacihaliloglu I. Knee-cartilage segmentation and thickness measurement from 2D ultrasound[J]. J Imaging, 2019, 5(4): 43.
[38] Jurvelin JS, R?s?nen T, Kolmonen P, et al. Comparison of optical, needle probe and ultrasonic techniques for the measurement of articular cartilage thickness[J]. J Biomech, 1995, 28(2): 231-235.
[39] Binette JS, Garon M, Savard P, et al. Tetrapolar measurement of electrical conductivity and thickness of articular cartilage[J]. J Biomech Eng, 2004, 126(4): 475-484.
[40] Cernohorsky P, Strackee SD, Streekstra GJ, et al. Computed tomography-mediated registration of trapeziometacarpal articular cartilage using intraarticular optical coherence tomography and cryomicrotome imaging: a cadaver study[J]. Cartilage, 2021, 13(suppl1): S563-S570.
[41] ?ncü YA, ?nlü ?, Gümü? B, et al. Application of diffuse optical back reflection spectroscopy for determining articular cartilage thickness in a clinical setting[J]. Int Orthop, 2023, 47(10): 2515-2521.

备注/Memo

备注/Memo:
基金项目: 2021年江苏省科学技术厅自然科学基金(BK20211083)、2022年江苏省科学技术厅社会发展项目重点研发计划(BK2022737)、2023年江苏省研究生实践创新计划(SJCX23_0683)
通信作者:杨兴? E-mail : xingyangsz@126.com
? ? ? ? ? 郝跃峰? E-mail : 13913109339@163.com
更新日期/Last Update: 2024-03-25