索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]肖傲,李凯.不同骨病环境中骨再生的组织工程治疗策略[J].国际骨科学杂志,2023,06:376-379.
点击复制

不同骨病环境中骨再生的组织工程治疗策略(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2023年06期
页码:
376-379
栏目:
综述
出版日期:
2023-12-25

文章信息/Info

Title:
-
作者:
肖傲李凯
030001 山西太原, 山西医科大学第二医院骨科
Author(s):
-
关键词:
组织工程骨缺损骨髓炎骨肿瘤骨坏死
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2023.06.010
文献标识码:
-
摘要:
组织工程通过协调细胞、生物材料支架和信号分子进行体内外组织或器官再生,随着该领域技术的不断发展, 其已成为较大骨缺损或骨再生能力受损患者可能的治疗方案。对支架进行功能化改造,可在克服各种不利因素影响 的同时促进骨再生。该文对不同骨病环境中有治疗潜力的骨再生组织工程设计方案进行综述,希望为促进该领域研 究由基础实验转向临床应用提供理论依据。
Abstract:
-

参考文献/References

[1] Heng BC, Bai Y, Li X, et al. Electroactive biomaterials for facilitating bone defect repair under pathological conditions[J]. Adv Sci (Weinh), 2023, 10(2): e2204502.
[2] Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: current concepts and future directions[J]. BMC Med, 2011, 9: 66.
[3] Alonzo M, Primo FA, Kumar SA, et al. Bone tissue engineering techniques, advances and scaffolds for treatment of bone defects[J]. Curr Opin Biomed Eng, 2021, 17: 100248.
[4] Xue N, Ding X, Huang R, et al. Bone tissue engineering in the treatment of bone defects[J]. Pharmaceuticals (Basel), 2022, 15(7): 879.
[5] Shen M, Wang L, Gao Y, et al. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects[J]. Mater Today Bio, 2022, 16: 100382.
[6] Tsiklin IL, Shabunin AV, Kolsanov AV, et al. In vivo bone tissue engineering strategies: advances and prospects[J]. Polymers (Basel), 2022, 14(15): 3222.
[7] Yan X, Yao H, Luo J, et al. Functionalization of electrospun nanofiber for bone tissue engineering[J]. Polymers (Basel), 2022, 14(14): 2940.
[8] Tao J, Zhang Y, Shen A, et al. Injectable chitosan-based thermosensitive hydrogel/nanoparticle-loaded system for local delivery of vancomycin in the treatment of osteomyelitis[J]. Int J Nanomedicine, 2020, 15: 5855-5871.
[9] Li Y, Chen L, Lin M, et al. Micro-CT analysis of osteomyelitis of rabbit tibial for model establishment and biomaterials application in tissue engineering[J]. Heliyon, 2022, 8(12): e12471.
[10] Kundu B, Reis RL, Kundu SC. Biomimetic antibacterial proosteogenic Cu-Sericin MOFs for osteomyelitis treatment[J]. Biomimetics (Basel), 2022, 7(2): 64.
[11] Freischmidt H, Armbruster J, Rothhaas C, et al. Efficacy of an antibiotic loaded ceramic-based bone graft substitute for the treatment of infected non-unions[J]. Biomedicines, 2022, 10(10): 2513.
[12] Wang Y, Zhao Z, Liu S, et al. Application of vancomycin-impregnated calcium sulfate hemihydrate/nanohydroxyapatite/carboxymethyl chitosan injectable hydrogels combined with BMSC sheets for the treatment of infected bone defects in a rabbit model[J]. BMC Musculoskelet Disord, 2022, 23(1): 557.
[13] Zhao Y, Wang H, Zou X, et al. Antibacterial vancomycin@ZIF-8 loaded PVA nanofiber membrane for infected bone repair[J].Int J Mol Sci, 2022, 23(10): 5629.
[14] Butonova SA, Ikonnikova EV, Sharsheeva A, et al. Degradation kinetic study of ZIF-8 microcrystals with and without the presence of lactic acid[J].RSC Adv, 2021, 11(62): 39169-39176.
[15] Wang Q, Chen C, Liu W, et al. Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects[J]. Sci Rep, 2017, 7: 41808.
[16] Xiao X, Liu Y, Guo M, et al. pH-triggered sustained release of arsenic trioxide by polyacrylic acid capped mesoporous silica nanoparticles for solid tumor treatment in vitro and in vivo[J]. J Biomater Appl, 2016, 31(1): 23-35.
[17] Liu F, Wang X, Chen T, et al. Hydroxyapatite/silver electrospun fibers for anti-infection and osteoinduction[J]. J Adv Res, 2019, 21: 91-102.
[18] Paterson TE, Shi R, Tian J, et al. Electrospun scaffolds containing silver-doped hydroxyapatite with antimicrobial properties for applications in orthopedic and dental bone surgery[J].J Funct Biomater, 2020, 11(3): 58.
[19] Noosak C, Jantorn P, Meesane J, et al. Dual-functional bioactive silk sericin for osteoblast responses and osteomyelitis treatment[J]. PLoS One, 2022, 17(3): e0264795.
[20] Münchow EA, Pankajakshan D, Albuquerque MT, et al. Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering[J]. Clin Oral Investig, 2016, 20(8): 1921-1933.
[21] Shen Q, Qi Y, Kong Y, et al. Advances in copper-based biomaterials with antibacterial and osteogenic properties for bone tissue engineering[J]. Front Bioeng Biotechnol, 2022, 9: 795425.
[22] Thai VL, Griffin KH, Thorpe SW, et al. Tissue engineered platforms for studying primary and metastatic neoplasm behavior in bone[J]. J Biomech, 2021, 115: 110189.
[23] González Díaz EC, Sinha S, Avedian RS, et al. Tissue-engineered 3D models for elucidating primary and metastatic bone cancer progression[J]. Acta Biomater, 2019, 99: 18-32.
[24] Bozorgi A, Sabouri L. Osteosarcoma, personalized medicine, and tissue engineering: an overview of overlapping fields of research[J]. Cancer Treat Res Commun, 2021, 27: 100324.
[25] Tavares FJTM, Soares PIP, Silva JC, et al. Preparation and in vitro characterization of magnetic CS/PVA/HA/pSPIONs scaffolds for magnetic hyperthermia and bone regeneration[J]. Int J Mol Sci, 2023, 24(2): 1128.
[26] Zhao L, Zhang X, Wang X, et al. Recent advances in selective photothermal therapy of tumor[J]. J Nanobiotechnology, 2021, 19(1): 335.
[27] Autefage H, Allen F, T ang HM, et al. Multiscale analyses reveal native-like lamellar bone repair and near perfect bone-contact with porous strontium-loaded bioactive glass[J]. Biomaterials, 2019, 209: 152-162.
[28] Yang C, Ma H, Wang Z, et al. 3D printed wesselsite nanosheets functionalized scaffold facilitates NIR-II photothermal therapy and vascularized bone regeneration[J]. Adv Sci (Weinh), 2021, 8(20): e2100894.
[29] Lin H, Gao S, Dai C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows[J]. J Am Chem Soc, 2017, 139(45): 16235- 16247.
[30] Yin J, Pan S, Guo X, et al. Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects[J]. Nanomicro Lett, 2021, 13(1): 30.
[31] Zhu T, Cui Y, Zhang M, et al. Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis[J]. Bioact Mater, 2020, 5(3): 584-601.
[32] Dong H, Zhu T, Zhang M, et al. Polymer scaffolds-enhanced bone regeneration in osteonecrosis therapy[J]. Front Bioeng Biotechnol, 2021, 9: 761302.
[33] Cao H, Guan H, Lai Y, et al. Review of various treatment options and potential therapies for osteonecrosis of the femoral head[J]. J Orthop Translat, 2015, 4: 57-70.
[34] Li Y, Han R, Geng C, et al. A new osteonecrosis animal model of the femoral head induced by microwave heating and repaired with tissue engineered bone[J]. Int Orthop, 2009, 33(2): 573-580.
[35] Murab S, Hawk T, Snyder A, et al. Tissue engineering strategies for treating avascular necrosis of the femoral head[J]. Bioengineering (Basel), 2021, 8(12): 200.
[36] Che Z, Song Y, Zhu L, et al. Emerging roles of growth factors in osteonecrosis of the femoral head[J]. Front Genet, 2022, 13: 1037190.
[37] Zhang F, Peng WX, Wang L, et al. Role of FGF-2 transfected bone marrow mesenchymal stem cells in engineered bone tissue for repair of avascular necrosis of femoral head in rabbits[J]. Cell Physiol Biochem, 2018, 48(2): 773-784.
[38] Liao H, Zhong Z, Liu Z, et al. Bone mesenchymal stem cells coexpressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head[J]. Exp Ther Med, 2018, 15(1): 954-962.
[39] Feng G, Zhang P, Huang J, et al. Sequential release of panax notoginseng saponins and osteopractic total flavone from Poly (L-Lactic Acid) scaffold for treating glucocorticoid-associated osteonecrosis of femoral head[J]. J Funct Biomater, 2023, 14(1): 31.

备注/Memo

备注/Memo:
通信作者: 李凯 E-mail: chinalikai@aliyun.com
更新日期/Last Update: 2023-12-25