索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]陈国良,赵振睿,杜鑫,等.透明质酸基水凝胶在骨组织工程中的应用[J].国际骨科学杂志,2024,04:265-269.
点击复制

透明质酸基水凝胶在骨组织工程中的应用(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2024年04期
页码:
265-269
栏目:
综述
出版日期:
2024-07-20

文章信息/Info

Title:
-
作者:
陈国良赵振睿杜鑫王文己
730000, 兰州大学第一临床医学院、兰州大学第一医院?骨科
Author(s):
-
关键词:
透明质酸水凝胶支架骨组织工程骨再生
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2024.04.011
文献标识码:
-
摘要:
由于机体自愈能力的有限性,大面积骨缺损的有效修复仍然是对临床治疗的巨大挑战。骨组织工程是多学科领域,其利用细胞、生物材料、生长因子的结合以促进骨骼的成骨和矿化。在应用于骨组织工程的各种支架中,水凝胶因能够模拟细胞外基质,而被认为是很有前途的骨再生材料。近年来,基于透明质酸的水凝胶因能够模拟骨组织的天然细胞外基质并为细胞支持和组织再生提供合适的微环境,而被广泛应用于骨骼相关疾病研究中。该文就近年来透明质酸基水凝胶的交联机制、生物活性物质递送以及与其他生物材料相结合在骨组织工程中的应用进行综述。
Abstract:
-

参考文献/References

[1] Schemitsch EH. Size matters: defining critical in bone defect size[J]. J Orthop Trauma, 2017, 31(Suppl 5): S20-S22.
[2] Zhang T, Wei Q, Zhou H, et al. Three-dimensional-printed individualized porous implants: a new "implant-bone" interface fusion concept for large bone defect treatment[J]. Bioact Mater, 2021,6(11): 3659-3670.
[3] Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review[J]. Bioact Mater, 2017, 2(4): 224-247.
[4] Erezuma I, Lukin I, Desimone M, et al. Progress in self-healing hydrogels and their applications in bone tissue engineering[J]. Biomater Adv, 2023, 146: 213274.
[5] Volpi N, Schiller J, Stern R, et al. Role, metabolism, chemical modifications and applications of hyaluronan[J]. Curr Med Chem, 2009, 16(14): 1718-1745.
[6] Agarwal G, Agiwal S, Srivastava A. Hyaluronic acid containing scaffolds ameliorate stem cell function for tissue repair and regeneration[J]. Int J Biol Macromol, 2020, 165(Pt A): 388-401.
[7] Saravanakumar K, Park S, Santosh SS, et al. Application of hyaluronic acid in tissue engineering, regenerative medicine, and nanomedicine: a review[J]. Int J Biol Macromol, 2022, 222(Pt B):2744-2760.
[8] Hwang HS, Lee CS. Recent progress in hyaluronic-acid-based hydrogels for bone tissue engineering[J]. Gels, 2023, 9(7): 588.
[9] Ding YW, Wang ZY, Ren ZW, et al. Advances in modified hyaluronic acid-based hydrogels for skin wound healing[J]. Biomater Sci, 2022, 10(13): 3393-3409.
[10] Schuurmans CCL, Mihajlovic M, Hiemstra C, et al. Hyaluronic acid and chondroitin sulfate (meth) acrylate-based hydrogels for tissue engineering: synthesis, characteristics and pre-clinical evaluation[J]. Biomaterials, 2021, 268: 120602.
[11] Trombino S, Servidio C, Curcio F, et al. Strategies for hyaluronic acid-based hydrogel design in drug delivery[J]. Pharmaceutics, 2019, 11(8): 407.
[12] Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities[J]. Science, 1988, 242(4885): 1528-1534.
[13] Rajabnejadkeleshteri A, Basiri H, Mohseni SS, et al. Preparation of microfluidic-based pectin microparticles loaded carbon dots conjugated with BMP-2 embedded in gelatin-elastin-hyaluronic acid hydrogel scaffold for bone tissue engineering application[J]. Int J Biol Macromol, 2021, 184: 29-41.
[14] Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model[J]. Arthritis Rheum, 2009, 60(3): 813-823.
[15] Maragkos GA, Cho LD, Legome E, et al. Delayed cranial decompression rates after initiation of unfractionated heparin versus low-molecular-weight heparin in traumatic brain injury[J]. World Neurosurg, 2022, 164: e1251-e1261.
[16] Burger MG, Grosso A, Briquez PS, et al. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration[J]. Acta Biomater, 2022, 149: 111-125.
[17] Quade M, Knaack S, Akkineni AR, et al. Central growth factor loaded depots in bone tissue engineering scaffolds for enhanced cell attraction[J]. Tissue Eng Part A, 2017, 23(15/16): 762-772.
[18] Visser R, Rico-Llanos GA, Pulkkinen H, et al. Peptides for bone tissue engineering[J]. J Control Release, 2016, 244(Pt A): 122-135.
[19] Russell FA, King R, Smillie SJ, et al. Calcitonin gene-related peptide:physiology and pathophysiology[J]. Physiol Rev, 2014, 94(4): 1099-1142.
[20] Li R, Sun Y, Cai Z, et al. Highly bioactive peptide-HA photo-crosslinking hydrogel for sustained promoting bone regeneration[J]. Chem Eng J, 2021, 415: 129015.
[21] Pigossi SC, Medeiros MC, Saska S, et al. Role of osteogenic growth peptide (OGP) and OGP(10-14) in bone regeneration: a review[J]. Int J Mol Sci, 2016, 17(11): 1885.
[22] Liu B, Wu J, Sun X, et al. Sustained delivery of osteogenic growth peptide through injectable photoinitiated composite hydrogel for osteogenesis[J]. Front Bioeng Biotechnol, 2023, 11: 1228250.
[23] O'Neill E, Awale G, Daneshmandi L, et al. The roles of ions on bone regeneration[J]. Drug Discov Today, 2018, 23(4): 879-890.
[24] Asensio G, Benito-Garzón L, Ramírez-Jiménez RA, et al. Biomimetic gradient scaffolds containing hyaluronic acid and Sr/Zn folates for osteochondral tissue engineering[J]. Polymers (Basel), 2021, 14(1):12.
[25] Wang X, Dai W, Gao C, et al. Spatiotemporal modulated scaffold for endogenous bone regeneration via harnessing sequentially released guiding signals[J]. ACS Appl Mater Interfaces, 2023, 15(50): 58873-58887.
[26] Bliuc D, Tran T, van Geel T, et al. Reduced bone loss is associated with reduced mortality risk in subjects exposed to nitrogen bisphosphonates: a mediation analysis[J]. J Bone Miner Res, 2019, 34(11): 2001-2011.
[27] Li Z, Wang H, Zhang K, et al. Bisphosphonate-based hydrogel mediates biomimetic negative feedback regulation of osteoclastic activity to promote bone regeneration[J]. Bioact Mater, 2022, 13:9-22.
[28] Sarrigiannidis SO, Rey JM, Dobre O, et al. A tough act to follow:collagen hydrogel modifications to improve mechanical and growth factor loading capabilities[J]. Mater Today Bio, 2021, 10: 100098.
[29] Gilarska A, Lewandowska-?ańcucka J, Guzdek-Zaj?c K, et al. Bioactive yet antimicrobial structurally stable collagen/chitosan/lysine functionalized hyaluronic acid - based injectable hydrogels for potential bone tissue engineering applications[J]. Int J Biol Macromol, 2020, 155: 938-950.
[30] Gilarska A, Hinz A, Bzowska M, et al. Addressing the osteoporosis problem: multifunctional injectable hybrid materials for controlling local bone tissue remodeling[J]. ACS Appl Mater Interfaces, 2021, 13(42): 49762-49779.
[31] Chen Y, Zhou Y, Hu Z, et al. Gelatin-based metamaterial hydrogel films with high conformality for ultra-soft tissue monitoring[J]. Nanomicro Lett, 2023, 16(1): 34.
[32] An C, Zhou R, Zhang H, et al. Microfluidic-templated cell-laden microgels fabricated using phototriggered imine-crosslinking as injectable and adaptable granular gels for bone regeneration[J]. Acta Biomater, 2023, 157: 91-107.
[33] Zhu Y, Chen J, Liu H, et al. Photo-cross-linked hydrogels for cartilage and osteochondral repair[J]. ACS Biomater Sci Eng, 2023, 9(12):6567-6585.
[34] Wei L, Wu S, Kuss M, et al. 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering[J]. Bioact Mater, 2019, 4: 256-260.
[35] Zhao D, Wang X, Tie C, et al. Bio-functional strontium-containing photocrosslinked alginate hydrogels for promoting the osteogenic behaviors[J]. Mater Sci Eng C Mater Biol Appl, 2021, 126: 112130.
[36] Hasany M, Thakur A, Taebnia N, et al. Combinatorial screening of nanoclay-reinforced hydrogels: a glimpse of the "holy grail" in orthopedic stem cell therapy?[J]. ACS Appl Mater Interfaces, 2018, 10(41): 34924-34941.
[37] Serafin A, Culebras M, Collins MN. Synthesis and evaluation of alginate, gelatin, and hyaluronic acid hybrid hydrogels for tissue engineering applications[J]. Int J Biol Macromol, 2023, 233: 123438.
[38] Bakshi PS, Selvakumar D, Kadirvelu K, et al. Chitosan as an environment friendly biomaterial : a review on recent modifications and applications[J]. Int J Biol Macromol, 2020, 150: 1072-1083.
[39] Tan Y, Ma L, Chen X, et al. Injectable hyaluronic acid/hydroxyapatite composite hydrogels as cell carriers for bone repair[J]. Int J Biol Macromol, 2022, 216: 547-557.
[40] Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering[J]. Acta Biomater, 2011, 7(7): 2769-2781.
[41] Dorcemus DL, Kim HS, Nukavarapu SP. Gradient scaffold with spatial growth factor profile for osteochondral interface engineering[J]. Biomed Mater, 2021, 16(3).
[42] Zhou P, Yan B, Wei B, et al. Quercetin-solid lipid nanoparticle-embedded hyaluronic acid functionalized hydrogel for immunomodulation to promote bone reconstruction[J]. Regen Biomater, 2023, 10: rbad025.

备注/Memo

备注/Memo:
基金项目:兰州大学第一医院院内基金(ldyyyn2022-7)
通信作者: 王文己 E-mail: ldyyjzwwj@163.com
更新日期/Last Update: 2024-07-20