索引超出了数组界限。
[1] Schemitsch EH. Size matters: defining critical in bone defect size[J]. J Orthop Trauma, 2017, 31(Suppl 5): S20-S22.
[2] Zhang T, Wei Q, Zhou H, et al. Three-dimensional-printed individualized porous implants: a new "implant-bone" interface fusion concept for large bone defect treatment[J]. Bioact Mater, 2021,6(11): 3659-3670.
[3] Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review[J]. Bioact Mater, 2017, 2(4): 224-247.
[4] Erezuma I, Lukin I, Desimone M, et al. Progress in self-healing hydrogels and their applications in bone tissue engineering[J]. Biomater Adv, 2023, 146: 213274.
[5] Volpi N, Schiller J, Stern R, et al. Role, metabolism, chemical modifications and applications of hyaluronan[J]. Curr Med Chem, 2009, 16(14): 1718-1745.
[6] Agarwal G, Agiwal S, Srivastava A. Hyaluronic acid containing scaffolds ameliorate stem cell function for tissue repair and regeneration[J]. Int J Biol Macromol, 2020, 165(Pt A): 388-401.
[7] Saravanakumar K, Park S, Santosh SS, et al. Application of hyaluronic acid in tissue engineering, regenerative medicine, and nanomedicine: a review[J]. Int J Biol Macromol, 2022, 222(Pt B):2744-2760.
[8] Hwang HS, Lee CS. Recent progress in hyaluronic-acid-based hydrogels for bone tissue engineering[J]. Gels, 2023, 9(7): 588.
[9] Ding YW, Wang ZY, Ren ZW, et al. Advances in modified hyaluronic acid-based hydrogels for skin wound healing[J]. Biomater Sci, 2022, 10(13): 3393-3409.
[10] Schuurmans CCL, Mihajlovic M, Hiemstra C, et al. Hyaluronic acid and chondroitin sulfate (meth) acrylate-based hydrogels for tissue engineering: synthesis, characteristics and pre-clinical evaluation[J]. Biomaterials, 2021, 268: 120602.
[11] Trombino S, Servidio C, Curcio F, et al. Strategies for hyaluronic acid-based hydrogel design in drug delivery[J]. Pharmaceutics, 2019, 11(8): 407.
[12] Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities[J]. Science, 1988, 242(4885): 1528-1534.
[13] Rajabnejadkeleshteri A, Basiri H, Mohseni SS, et al. Preparation of microfluidic-based pectin microparticles loaded carbon dots conjugated with BMP-2 embedded in gelatin-elastin-hyaluronic acid hydrogel scaffold for bone tissue engineering application[J]. Int J Biol Macromol, 2021, 184: 29-41.
[14] Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model[J]. Arthritis Rheum, 2009, 60(3): 813-823.
[15] Maragkos GA, Cho LD, Legome E, et al. Delayed cranial decompression rates after initiation of unfractionated heparin versus low-molecular-weight heparin in traumatic brain injury[J]. World Neurosurg, 2022, 164: e1251-e1261.
[16] Burger MG, Grosso A, Briquez PS, et al. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration[J]. Acta Biomater, 2022, 149: 111-125.
[17] Quade M, Knaack S, Akkineni AR, et al. Central growth factor loaded depots in bone tissue engineering scaffolds for enhanced cell attraction[J]. Tissue Eng Part A, 2017, 23(15/16): 762-772.
[18] Visser R, Rico-Llanos GA, Pulkkinen H, et al. Peptides for bone tissue engineering[J]. J Control Release, 2016, 244(Pt A): 122-135.
[19] Russell FA, King R, Smillie SJ, et al. Calcitonin gene-related peptide:physiology and pathophysiology[J]. Physiol Rev, 2014, 94(4): 1099-1142.
[20] Li R, Sun Y, Cai Z, et al. Highly bioactive peptide-HA photo-crosslinking hydrogel for sustained promoting bone regeneration[J]. Chem Eng J, 2021, 415: 129015.
[21] Pigossi SC, Medeiros MC, Saska S, et al. Role of osteogenic growth peptide (OGP) and OGP(10-14) in bone regeneration: a review[J]. Int J Mol Sci, 2016, 17(11): 1885.
[22] Liu B, Wu J, Sun X, et al. Sustained delivery of osteogenic growth peptide through injectable photoinitiated composite hydrogel for osteogenesis[J]. Front Bioeng Biotechnol, 2023, 11: 1228250.
[23] O'Neill E, Awale G, Daneshmandi L, et al. The roles of ions on bone regeneration[J]. Drug Discov Today, 2018, 23(4): 879-890.
[24] Asensio G, Benito-Garzón L, Ramírez-Jiménez RA, et al. Biomimetic gradient scaffolds containing hyaluronic acid and Sr/Zn folates for osteochondral tissue engineering[J]. Polymers (Basel), 2021, 14(1):12.
[25] Wang X, Dai W, Gao C, et al. Spatiotemporal modulated scaffold for endogenous bone regeneration via harnessing sequentially released guiding signals[J]. ACS Appl Mater Interfaces, 2023, 15(50): 58873-58887.
[26] Bliuc D, Tran T, van Geel T, et al. Reduced bone loss is associated with reduced mortality risk in subjects exposed to nitrogen bisphosphonates: a mediation analysis[J]. J Bone Miner Res, 2019, 34(11): 2001-2011.
[27] Li Z, Wang H, Zhang K, et al. Bisphosphonate-based hydrogel mediates biomimetic negative feedback regulation of osteoclastic activity to promote bone regeneration[J]. Bioact Mater, 2022, 13:9-22.
[28] Sarrigiannidis SO, Rey JM, Dobre O, et al. A tough act to follow:collagen hydrogel modifications to improve mechanical and growth factor loading capabilities[J]. Mater Today Bio, 2021, 10: 100098.
[29] Gilarska A, Lewandowska-?ańcucka J, Guzdek-Zaj?c K, et al. Bioactive yet antimicrobial structurally stable collagen/chitosan/lysine functionalized hyaluronic acid - based injectable hydrogels for potential bone tissue engineering applications[J]. Int J Biol Macromol, 2020, 155: 938-950.
[30] Gilarska A, Hinz A, Bzowska M, et al. Addressing the osteoporosis problem: multifunctional injectable hybrid materials for controlling local bone tissue remodeling[J]. ACS Appl Mater Interfaces, 2021, 13(42): 49762-49779.
[31] Chen Y, Zhou Y, Hu Z, et al. Gelatin-based metamaterial hydrogel films with high conformality for ultra-soft tissue monitoring[J]. Nanomicro Lett, 2023, 16(1): 34.
[32] An C, Zhou R, Zhang H, et al. Microfluidic-templated cell-laden microgels fabricated using phototriggered imine-crosslinking as injectable and adaptable granular gels for bone regeneration[J]. Acta Biomater, 2023, 157: 91-107.
[33] Zhu Y, Chen J, Liu H, et al. Photo-cross-linked hydrogels for cartilage and osteochondral repair[J]. ACS Biomater Sci Eng, 2023, 9(12):6567-6585.
[34] Wei L, Wu S, Kuss M, et al. 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering[J]. Bioact Mater, 2019, 4: 256-260.
[35] Zhao D, Wang X, Tie C, et al. Bio-functional strontium-containing photocrosslinked alginate hydrogels for promoting the osteogenic behaviors[J]. Mater Sci Eng C Mater Biol Appl, 2021, 126: 112130.
[36] Hasany M, Thakur A, Taebnia N, et al. Combinatorial screening of nanoclay-reinforced hydrogels: a glimpse of the "holy grail" in orthopedic stem cell therapy?[J]. ACS Appl Mater Interfaces, 2018, 10(41): 34924-34941.
[37] Serafin A, Culebras M, Collins MN. Synthesis and evaluation of alginate, gelatin, and hyaluronic acid hybrid hydrogels for tissue engineering applications[J]. Int J Biol Macromol, 2023, 233: 123438.
[38] Bakshi PS, Selvakumar D, Kadirvelu K, et al. Chitosan as an environment friendly biomaterial : a review on recent modifications and applications[J]. Int J Biol Macromol, 2020, 150: 1072-1083.
[39] Tan Y, Ma L, Chen X, et al. Injectable hyaluronic acid/hydroxyapatite composite hydrogels as cell carriers for bone repair[J]. Int J Biol Macromol, 2022, 216: 547-557.
[40] Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering[J]. Acta Biomater, 2011, 7(7): 2769-2781.
[41] Dorcemus DL, Kim HS, Nukavarapu SP. Gradient scaffold with spatial growth factor profile for osteochondral interface engineering[J]. Biomed Mater, 2021, 16(3).
[42] Zhou P, Yan B, Wei B, et al. Quercetin-solid lipid nanoparticle-embedded hyaluronic acid functionalized hydrogel for immunomodulation to promote bone reconstruction[J]. Regen Biomater, 2023, 10: rbad025.