索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]王玺玉,赵俊杰,张兆坤,等.水凝胶在软骨组织工程中的应用[J].国际骨科学杂志,2024,04:261-264.
点击复制

水凝胶在软骨组织工程中的应用(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2024年04期
页码:
261-264
栏目:
综述
出版日期:
2024-07-20

文章信息/Info

Title:
-
作者:
王玺玉赵俊杰张兆坤黄鹏飞赵宇昊赵海燕
730000, 兰州大学第一临床医学院、兰州大学第一医院骨科
Author(s):
-
关键词:
水凝胶干细胞 软骨支架软骨再生
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2024.04.010
文献标识码:
-
摘要:
软骨损伤是一种骨科常见病。由于软骨组织本身不含血管、神经和淋巴,且软骨细胞的迁移能力极为有限,因此在受损时其细胞和基质会出现一系列病理改变,使其再生能力大幅降低,从而无法恢复原有功能。水凝胶是一种结构复杂的新型生物材料,已成为软骨组织工程(CTE)的理想材料之一。近年来,随着CTE技术不断改进,水凝胶经过改性修饰,性能更为出色,可以为损伤区域提供临时的机械支持,从而更好地促进软骨细胞的黏附、增殖和存活。该文就近年来水凝胶在CTE中的应用进行综述。
Abstract:
-

参考文献/References

[1] Wei W, Ma Y, Yao X, et al. Advanced hydrogels for the repair of cartilage defects and regeneration[J]. Bioact Mater, 2020, 6(4): 998-1011.
[2] Moradi M, Parvizpour F, Arabpour Z, et al. Articular cartilage injury;current status and future direction[J]. Curr Stem Cell Res Ther, 2024, 19(5): 653-661.
[3] Du D, Hsu P, Zhu Z, et al. Current surgical options and innovation for repairing articular cartilage defects in the femoral head[J]. J Orthop Translat, 2019, 21: 122-128.
[4] Redondo ML, Naveen NB, Liu JN, et al. Preservation of knee articular cartilage[J]. Sports Med Arthrosc Rev, 2018, 26(4): e23-e30.
[5] Wixted CM, Dekker TJ, Adams SB. Particulated juvenile articular cartilage allograft transplantation for osteochondral lesions of the knee and ankle[J]. Expert Rev Med Devices, 2020, 17(3): 235-244.
[6] Volova LT, Kotelnikov GP, Shishkovsky I, et al. 3D bioprinting of hyaline articular cartilage: biopolymers, hydrogels, and bioinks[J]. Polymers (Basel), 2023, 15(12): 2695.
[7] Norioka C, Inamoto Y, Hajime C, et al. A universal method to easily design tough and stretchable hydrogels[J]. NPG Asia Mater, 2021, 13: 34.
[8] Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications[J]. Heliyon, 2020, 6(4): e03719.
[9] Wu J, Chen Q, Deng C, et al. Exquisite design of injectable hydrogels in cartilage repair[J]. Theranostics, 2020, 10(21): 9843-9864.
[10] Gao F, Mao X, Wu X. Mesenchymal stem cells in osteoarthritis: the need for translation into clinical therapy[J]. Prog Mol Biol Transl Sci, 2023, 199: 199-225.
[11] Cho WJ, Ahn J, Lee M, et al. Combinatorial effect of mesenchymal stem cells and extracellular vesicles in a hydrogel on cartilage regeneration[J]. Tissue Eng Regen Med, 2023, 20(1): 143-154.
[12] Cao H, Li Z, Chen Y, et al. Viscoelasticity microenvironment constructed by self-crosslinking hyaluronan hybrid hydrogels regulates chondrogenic differentiation of mesenchymal stem cells[J]. Compos Part B Eng, 2023, 263(15): 110871.1-110871.11.
[13] Yao H, Xue J, Wang Q, et al. Glucosamine-modified polyethylene glycol hydrogel-mediated chondrogenic differentiation of human mesenchymal stem cells[J]. Mater Sci Eng C Mater Biol Appl, 2017, 79: 661-670.
[14] Li M, Yin H, Yan Z, et al. The immune microenvironment in cartilage injury and repair[J]. Acta Biomater, 2022, 140: 23-42.
[15] Liu Y, Yuan Z, Liu S, et al. Bioactive phenylboronic acid-functionalized hyaluronic acid hydrogels induce chondro-aggregates and promote chondrocyte phenotype[J]. Macromol Biosci, 2023, 23(11): e2300153.
[16] Zhao Z, Xia X, Liu J, et al. Cartilage-inspired self-assembly glycopeptide hydrogels for cartilage regeneration via ROS scavenging[J]. Bioact Mater, 2023, 32: 319-332.
[17] Radulescu DM, Neacsu IA, Grumezescu AM, et al. New insights of scaffolds based on hydrogels in tissue engineering[J]. Polymers (Basel), 2022, 14(4): 799.
[18] Amiryaghoubi N, Fathi M, Barar J, et al. Hydrogel-based scaffolds for bone and cartilage tissue engineering and regeneration[J]. React Funct Polym, 2022,177: 1-16.
[19] Zhuang L, Jie W, Yousef F, et al. Smart hydrogels: network design and emerging applications[J]. Can J Chem Eng, 2018, 96(10): 2100-2114.
[20] Wu X, Ding J, Xu P, et al. A cell-free ROS-responsive hydrogel/oriented poly(lactide-co-glycolide) hybrid scaffold for reducing inflammation and restoring full-thickness cartilage defectsin vivo[J]. Biomed Mater, 2021, 16(6): 064101.
[21] Wu X, Cheng X, Kang M, et al. Natural polysaccharide-based hydrogel bioprinting for articular cartilage repair[J]. Front in Mater, 2023, 10: 1204318.
[22] Krishnamoorthi MK, Sarig U, Baruch L, et al. Robust fabrication of composite 3D scaffolds with tissue-specific bioactivity: a proof-of-concept study[J]. ACS Appl Bio Mater, 2020, 3(8): 4974-4986.
[23] Wang S, Luo B, Bai B, et al. 3D Printed chondrogenic functionalized PGS bioactive scaffold for cartilage regeneration[J]. Adv Healthc Mater, 2023, 12(27): e2301006.
[24] Xia H, Zhao D, Zhu H, et al. Lyophilized scaffolds fabricated from 3D-printed photocurable natural hydrogel for cartilage regeneration[J]. ACS Appl Mater Interfaces, 2018, 10(37): 31704-31715.
[25] Liu G, Guo Q, Liu C, et al. Cytomodulin-10 modified GelMA hydrogel with kartogenin for in-situ osteochondral regeneration[J]. Acta Biomater, 2023, 169: 317-333.
[26] Xiao H, Dong Y, Wan D, et al. Injectable hydrogel loaded with 4-octyl itaconate enhances cartilage regeneration by regulating macrophage polarization[J]. Biomater Sci, 2023, 11(7): 2445-2460.
[27] Li X, He L, Li N, et al. Curcumin loaded hydrogel with anti-inflammatory activity to promote cartilage regeneration in immunocompetent animals[J]. J Biomater Sci Polym Ed, 2023, 34(2):200-216.
[28] Zhang Y, Li Z, Guan J, et al. Hydrogel: a potential therapeutic material for bone tissue engineering[J]. Aip Advances, 2021, 11(1):010701.
[29] García-Fernández L. Osteochondral angiogenesis and promoted vascularization: new therapeutic target[J]. Adv Exp Med Biol, 2018, 1059: 315-330.
[30] Yue D, Du L, Zhang B, et al. Time-dependently appeared microenvironmental changes and mechanism after cartilage or joint damage and the influences on cartilage regeneration[J]. Organogenesis, 2021, 17(3-4): 85-99.
[31] Chen Y, Chen W, Ren Y, et al. Lipid nanoparticle-encapsulated VEGFa siRNA facilitates cartilage formation by suppressing angiogenesis[J]. Int J Biol Macromol, 2022, 221: 1313-1324.[32] Yang S, Jiang W, Hong X, et al. Subcutaneous osteochondral regeneration using a bilayer scaffold by leveraging angiogenic activities[J]. Mater Letters, 2022, 326 (1): 1-4.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金(82060394)、兰州市人才创新创业项目(2020-RC-45)、兰州大学第一医院院内基金(ldyyyn2022-73)
通信作者: 赵海燕 E-mail: zhaohaiyan8606@163.com
更新日期/Last Update: 2024-07-20