索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]奥其,高晓宇,白志钢,等.下肢力线不良解剖危险因素与非接触性前交叉韧带损伤[J].国际骨科学杂志,2024,04:238-241.
点击复制

下肢力线不良解剖危险因素与非接触性前交叉韧带损伤(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2024年04期
页码:
238-241
栏目:
综述
出版日期:
2024-07-20

文章信息/Info

Title:
-
作者:
奥其高晓宇白志钢新苏雅拉图
017000, 内蒙古医科大学鄂尔多斯临床医学院
Author(s):
-
关键词:
下肢力线不良前交叉韧带非接触性损伤解剖因素
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2024.04.005
文献标识码:
-
摘要:
前交叉韧带(ACL)是维持人体活动的重要组织之一,下肢力线不良会导致运动中非接触性ACL损伤。导致下肢力线不良的解剖因素包括骨性因素与非骨性因素,骨性因素主要包括胫骨因素、股骨髁因素、股骨近端及髌骨与足踝因素等,非骨性因素主要包括神经型因素、股骨机械轴周围因素、胫骨机械轴周围因素等。运动导致的非接触性ACL损伤大多由于下肢生物力线不良而影响膝关节正常负重,造成ACL力学环境异常,而ACL损伤修复或重建术后移植物失效的病例中也存在下肢力线不良的情况。因此,在临床中准确评估并纠正下肢力线不良,对于预防非接触性ACL损伤和ACL重建术后移植物失效有着重要意义。
Abstract:
-

参考文献/References

[1] Kamath AF, Israelite C, Horneff J, et al. Editorial: what is varus or valgus knee alignment?: a call for a uniform radiographic classification[J]. Clin Orthop Relat Res, 2010, 468(6): 1702-1704.
[2] 唐承杰, 贾军锋, 张挥武. 基于CT数据的三维重建技术测量膝骨关节炎患者下肢力线及3D打印导板技术在膝关节置换中的应用研究[J]. 中华骨与关节外科杂志, 2022, 15(12): 932-938.
[3] Ahrend MD, Baumgartner H, Ihle C, et al. Influence of axial limb rotation on radiographic lower limb alignment: a systematic review[J]. Arch Orthop Trauma Surg, 2022, 142(11): 3349-3366.
[4] Duthon VB, Barea C, Abrassart S, et al. Anatomy of the anterior cruciate ligament[J]. Knee Surg Sports Traumatol Arthrosc, 2006, 14(3): 204-213.
[5] Buoncristiani AM, Tjoumakaris FP, Starman JS, et al. Anatomic double-bundle anterior cruciate ligament reconstruction[J]. Arthroscopy, 2006, 22(9): 1000-1006.
[6] Ball S, Stephen JM, El-Daou H, et al. The medial ligaments and the ACL restrain anteromedial laxity of the knee[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(12): 3700-3708.
[7] Kohn L, Rembeck E, Rauch A. Anterior cruciate ligament injury in adults : diagnostics and treatment[J]. Orthopade, 2020, 49(11): 1013-1028.
[8] Benner RW, Shelbourne KD, Gray T. The degree of knee extension does not affect postoperative stability or subsequent graft tear rate after anterior cruciate ligament reconstruction with patellar tendon autograft[J]. Am J Sports Med, 2016, 44(4): 844-849.
[9] Chang R, Chen A, Li X, et al. K-space data reconstruction algorithm-based MRI diagnosis and influencing factors of knee anterior cruciate ligament injury[J]. Contrast Media Mol Imaging, 2022, 2022:1711456.
[10] Ikawa MH, Yamada AF, da Rocha Corrêa Fernandes A, et al. Relationship between anterior cruciate ligament rupture and the posterior tibial and meniscal slopes in professional soccer athletes[J]. Skeletal Radiol, 2021, 50(10): 2041-2047.
[11] Hohmann E, Tetsworth K, Glatt V, et al. Increased posterior slope of the medial and lateral meniscus posterior horn is associated with anterior cruciate ligament injuries[J]. Arthroscopy, 2022, 38(1): 109-118.
[12] Brandon ML, Haynes PT, Bonamo JR, et al. The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency[J]. Arthroscopy, 2006, 22(8): 894-899.
[13] Duerr R, Ormseth B, Adelstein J, et al. Elevated posterior tibial slope is associated with anterior cruciate ligament reconstruction failures:a systematic review and meta-analysis[J]. Arthroscopy, 2023, 39(5):1299-1309.
[14] Bernholt D, DePhillipo NN, Aman ZS, et al. Increased posterior tibial slope results in increased incidence of posterior lateral meniscal root tears in ACL reconstruction patients[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(11): 3883-3891.
[15] Pfeiffer TR, Burnham JM, Kanakamedala AC, et al. Distal femur morphology affects rotatory knee instability in patients with anterior cruciate ligament ruptures[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(5): 1514-1519.
[16] Rougereau G, Pujol N, Langlais T, et al. Is lateral femoral condyle hypoplasia a feature of genu valgum? A morphological computed tomography study of 200 knees[J]. Orthop Traumatol Surg Res, 2023,109(4): 103582.
[17] He M, Li J. Increased lateral femoral condyle ratio measured by MRI is associated with higher risk of noncontact anterior cruciate ligament injury[J]. BMC Musculoskelet Disord, 2022, 23(1): 190.
[18] Fernandes MS, Pereira R, Andrade R, et al. Is the femoral lateral condyle’s bone morphology the trochlea of the ACL?[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(1): 207-214.
[19] Li K, Zheng X, Li J, et al. Increased lateral femoral condyle ratio is associated with greater risk of ALC injury in non-contact anterior cruciate ligament injury[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(9): 3077-3084.
[20] Jeon N, Choi NH, Hwangbo BH, et al. An increased lateral femoral condyle ratio in addition to increased posterior tibial slope and narrower notch index is a risk factor for female anterior cruciate ligament injury[J]. Arthroscopy, 2022, 38(5): 1597-1604.
[21] Choi NH, Lee DM, Shin HJ, et al. Combined anterolateral ligament and anterior cruciate ligament injury is associated with increased lateral femoral condyle ratio[J]. Arthroscopy, 2023, 39(5): 1235-1241.
[22] Riemer L, Dargel J, Sch?ferhoff P, et al. Femoral condyle configuration and its impact on anterior cruciate ligament reconstruction[J]. Technol Health Care, 2023, 31(5): 1607-1617.
[23] Fabricant PD, Chipman DE, Pascual-Leone N, et al. Simultaneous anterior cruciate ligament reconstruction and implant-mediated guided growth to correct genu valgum in skeletally immature patients[J]. J ISAKOS, 2023, 8(3): 184-188.
[24] Ellsworth BK, Aitchison AH, Fabricant PD, et al. Use of implant-mediated guided growth with tension band plate in skeletally immature patients with knee pathology: a retrospective review[J]. HSS J, 2022, 18(3): 399-407.
[25] Barnum MS, Boyd ED, Vacek P, et al. Association of geometric characteristics of knee anatomy (alpha angle and intercondylar notch type) with noncontact ACL injury[J]. Am J Sports Med, 2021, 49(10):2624-2630.
[26] Iriuchishima T, Goto B, Fu FH. Truncated-pyramid shape simulation for the measurement of femoral intercondylar notch volume can detect the volume difference between ACL-injured and intact subjects[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(6): 1709-1713.
[27] Jha V, Azam MQ, Jain P, et al. Does femoral intercondylar notch volume differ in anterior cruciate ligament-injured adult patients compared to the uninjured?: a meta-analysis[J]. Clin Orthop Surg, 2022, 14(1): 76-89.
[28] Rollet ME, Knafo Y, Granger B, et al. Femoral intercondylar notch:accuracy of a novel MRI measurement protocol[J]. Orthop Traumatol Surg Res, 2022, 108(3): 103238.
[29] Scorcelletti M, Reeves ND, Rittweger J, et al. Femoral anteversion:significance and measurement[J]. J Anat, 2020, 237(5): 811-826.
[30] Machado EM, Rapello F, Ocarino JM, et al. Influence of lower limb torque, range of motion, and foot alignment in patellar rotation (Arno angle) in athletes[J]. Braz J Phys Ther, 2022, 26(3): 100414.
[31] Burssens ABM, Buedts K, Barg A, et al. Is lower-limb alignment associated with hindfoot deformity in the coronal plane? A weightbearing CT analysis[J]. Clin Orthop Relat Res, 2020, 478(1):154-168.
[32] Kodithuwakku Arachchige SNK, Chander H, Knight A. Flatfeet:biomechanical implications, assessment and management[J]. Foot (Edinb), 2019, 38: 81-85.
[33] Ippersiel P, Robbins SM, Dixon PC. Lower-limb coordination and variability during gait: the effects of age and walking surface[J]. Gait Posture, 2021, 85: 251-257.
[34] Alessandro C, Prashara A, Tentler DP, et al. Inhibition of knee joint sensory afferents alters covariation across strides between quadriceps muscles during locomotion[J]. J Appl Physiol(1985), 2023, 134(4):957-968.
[35] Wall SJ, Rose DM, Sutter EG, et al. The role of axial compressive and quadriceps forces in noncontact anterior cruciate ligament injury:a cadaveric study[J]. Am J Sports Med, 2012, 40(3): 568-573.
[36] Boden BP, Sheehan FT. Mechanism of non-contact ACL injury:OREF Clinical Research Award 2021[J]. J Orthop Res, 2022, 40(3):531-540.
[37] Yu B, Garrett WE. Mechanisms of non-contact ACL injuries[J]. Br J Sports Med,2007, 41 Suppl 1(Suppl 1): i47-i51.
[38] Jeong J, Choi DH, Shin CS. Core strength training can alter neuromuscular and biomechanical risk factors for anterior cruciate ligament injury[J]. Am J Sports Med, 2021, 49(1): 183-192.
[39] Ceyssens L, Vanelderen R, Barton C, et al. Biomechanical risk factors associated with running-related injuries: a systematic review[J]. Sports Med, 2019, 49(7): 1095-1115.
[40] Hutchinson LA, Lichtwark GA, Willy RW, et al. The iliotibial band:a complex structure with versatile functions[J]. Sports Med, 2022, 52(5): 995-1008.
[41] Willinger L, Balendra G, Pai V, et al. High incidence of superficial and deep medial collateral ligament injuries in ’isolated’ anterior cruciate ligament ruptures: a long overlooked injury[J]. Knee Surg Sports Traumatol Arthrosc, 2022, 30(1): 167-175.
[42] Miyaji N, Holthof SR, Ball SV, et al. Medial collateral ligament reconstruction for anteromedial instability of the knee: a biomechanical study in vitro[J]. Am J Sports Med, 2022, 50(7): 1823-1831.
[43] Zabrzyński J, Huri G, Yataganbaba A, et al. Current concepts on the morphology of popliteus tendon and its clinical implications[J]. Folia Morphol (Warsz), 2021, 80(3): 505-513.
[44] Miklovic TM, Donovan L, Protzuk OA, et al. Acute lateral ankle sprain to chronic ankle instability: a pathway of dysfunction[J]. Phys Sportsmed, 2018, 46(1): 116-122.
[45] Jeon HG, Lee SY, Park SE, et al. Ankle instability patients exhibit altered muscle activation of lower extremity and ground reaction force during landing: a systematic review and meta-analysis[J]. J Sports Sci Med, 2021, 20(2): 373-390.

备注/Memo

备注/Memo:
基金项目:内蒙古自治区卫生健康科技计划项目(202201591)、鄂尔多斯市科技计划项目(2022YY001)
通信作者:新苏雅拉图 E-mail: syltu@163.com
更新日期/Last Update: 2024-07-20