索引超出了数组界限。
[1] Kamath AF, Israelite C, Horneff J, et al. Editorial: what is varus or valgus knee alignment?: a call for a uniform radiographic classification[J]. Clin Orthop Relat Res, 2010, 468(6): 1702-1704.
[2] 唐承杰, 贾军锋, 张挥武. 基于CT数据的三维重建技术测量膝骨关节炎患者下肢力线及3D打印导板技术在膝关节置换中的应用研究[J]. 中华骨与关节外科杂志, 2022, 15(12): 932-938.
[3] Ahrend MD, Baumgartner H, Ihle C, et al. Influence of axial limb rotation on radiographic lower limb alignment: a systematic review[J]. Arch Orthop Trauma Surg, 2022, 142(11): 3349-3366.
[4] Duthon VB, Barea C, Abrassart S, et al. Anatomy of the anterior cruciate ligament[J]. Knee Surg Sports Traumatol Arthrosc, 2006, 14(3): 204-213.
[5] Buoncristiani AM, Tjoumakaris FP, Starman JS, et al. Anatomic double-bundle anterior cruciate ligament reconstruction[J]. Arthroscopy, 2006, 22(9): 1000-1006.
[6] Ball S, Stephen JM, El-Daou H, et al. The medial ligaments and the ACL restrain anteromedial laxity of the knee[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(12): 3700-3708.
[7] Kohn L, Rembeck E, Rauch A. Anterior cruciate ligament injury in adults : diagnostics and treatment[J]. Orthopade, 2020, 49(11): 1013-1028.
[8] Benner RW, Shelbourne KD, Gray T. The degree of knee extension does not affect postoperative stability or subsequent graft tear rate after anterior cruciate ligament reconstruction with patellar tendon autograft[J]. Am J Sports Med, 2016, 44(4): 844-849.
[9] Chang R, Chen A, Li X, et al. K-space data reconstruction algorithm-based MRI diagnosis and influencing factors of knee anterior cruciate ligament injury[J]. Contrast Media Mol Imaging, 2022, 2022:1711456.
[10] Ikawa MH, Yamada AF, da Rocha Corrêa Fernandes A, et al. Relationship between anterior cruciate ligament rupture and the posterior tibial and meniscal slopes in professional soccer athletes[J]. Skeletal Radiol, 2021, 50(10): 2041-2047.
[11] Hohmann E, Tetsworth K, Glatt V, et al. Increased posterior slope of the medial and lateral meniscus posterior horn is associated with anterior cruciate ligament injuries[J]. Arthroscopy, 2022, 38(1): 109-118.
[12] Brandon ML, Haynes PT, Bonamo JR, et al. The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency[J]. Arthroscopy, 2006, 22(8): 894-899.
[13] Duerr R, Ormseth B, Adelstein J, et al. Elevated posterior tibial slope is associated with anterior cruciate ligament reconstruction failures:a systematic review and meta-analysis[J]. Arthroscopy, 2023, 39(5):1299-1309.
[14] Bernholt D, DePhillipo NN, Aman ZS, et al. Increased posterior tibial slope results in increased incidence of posterior lateral meniscal root tears in ACL reconstruction patients[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(11): 3883-3891.
[15] Pfeiffer TR, Burnham JM, Kanakamedala AC, et al. Distal femur morphology affects rotatory knee instability in patients with anterior cruciate ligament ruptures[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(5): 1514-1519.
[16] Rougereau G, Pujol N, Langlais T, et al. Is lateral femoral condyle hypoplasia a feature of genu valgum? A morphological computed tomography study of 200 knees[J]. Orthop Traumatol Surg Res, 2023,109(4): 103582.
[17] He M, Li J. Increased lateral femoral condyle ratio measured by MRI is associated with higher risk of noncontact anterior cruciate ligament injury[J]. BMC Musculoskelet Disord, 2022, 23(1): 190.
[18] Fernandes MS, Pereira R, Andrade R, et al. Is the femoral lateral condyle’s bone morphology the trochlea of the ACL?[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(1): 207-214.
[19] Li K, Zheng X, Li J, et al. Increased lateral femoral condyle ratio is associated with greater risk of ALC injury in non-contact anterior cruciate ligament injury[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(9): 3077-3084.
[20] Jeon N, Choi NH, Hwangbo BH, et al. An increased lateral femoral condyle ratio in addition to increased posterior tibial slope and narrower notch index is a risk factor for female anterior cruciate ligament injury[J]. Arthroscopy, 2022, 38(5): 1597-1604.
[21] Choi NH, Lee DM, Shin HJ, et al. Combined anterolateral ligament and anterior cruciate ligament injury is associated with increased lateral femoral condyle ratio[J]. Arthroscopy, 2023, 39(5): 1235-1241.
[22] Riemer L, Dargel J, Sch?ferhoff P, et al. Femoral condyle configuration and its impact on anterior cruciate ligament reconstruction[J]. Technol Health Care, 2023, 31(5): 1607-1617.
[23] Fabricant PD, Chipman DE, Pascual-Leone N, et al. Simultaneous anterior cruciate ligament reconstruction and implant-mediated guided growth to correct genu valgum in skeletally immature patients[J]. J ISAKOS, 2023, 8(3): 184-188.
[24] Ellsworth BK, Aitchison AH, Fabricant PD, et al. Use of implant-mediated guided growth with tension band plate in skeletally immature patients with knee pathology: a retrospective review[J]. HSS J, 2022, 18(3): 399-407.
[25] Barnum MS, Boyd ED, Vacek P, et al. Association of geometric characteristics of knee anatomy (alpha angle and intercondylar notch type) with noncontact ACL injury[J]. Am J Sports Med, 2021, 49(10):2624-2630.
[26] Iriuchishima T, Goto B, Fu FH. Truncated-pyramid shape simulation for the measurement of femoral intercondylar notch volume can detect the volume difference between ACL-injured and intact subjects[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(6): 1709-1713.
[27] Jha V, Azam MQ, Jain P, et al. Does femoral intercondylar notch volume differ in anterior cruciate ligament-injured adult patients compared to the uninjured?: a meta-analysis[J]. Clin Orthop Surg, 2022, 14(1): 76-89.
[28] Rollet ME, Knafo Y, Granger B, et al. Femoral intercondylar notch:accuracy of a novel MRI measurement protocol[J]. Orthop Traumatol Surg Res, 2022, 108(3): 103238.
[29] Scorcelletti M, Reeves ND, Rittweger J, et al. Femoral anteversion:significance and measurement[J]. J Anat, 2020, 237(5): 811-826.
[30] Machado EM, Rapello F, Ocarino JM, et al. Influence of lower limb torque, range of motion, and foot alignment in patellar rotation (Arno angle) in athletes[J]. Braz J Phys Ther, 2022, 26(3): 100414.
[31] Burssens ABM, Buedts K, Barg A, et al. Is lower-limb alignment associated with hindfoot deformity in the coronal plane? A weightbearing CT analysis[J]. Clin Orthop Relat Res, 2020, 478(1):154-168.
[32] Kodithuwakku Arachchige SNK, Chander H, Knight A. Flatfeet:biomechanical implications, assessment and management[J]. Foot (Edinb), 2019, 38: 81-85.
[33] Ippersiel P, Robbins SM, Dixon PC. Lower-limb coordination and variability during gait: the effects of age and walking surface[J]. Gait Posture, 2021, 85: 251-257.
[34] Alessandro C, Prashara A, Tentler DP, et al. Inhibition of knee joint sensory afferents alters covariation across strides between quadriceps muscles during locomotion[J]. J Appl Physiol(1985), 2023, 134(4):957-968.
[35] Wall SJ, Rose DM, Sutter EG, et al. The role of axial compressive and quadriceps forces in noncontact anterior cruciate ligament injury:a cadaveric study[J]. Am J Sports Med, 2012, 40(3): 568-573.
[36] Boden BP, Sheehan FT. Mechanism of non-contact ACL injury:OREF Clinical Research Award 2021[J]. J Orthop Res, 2022, 40(3):531-540.
[37] Yu B, Garrett WE. Mechanisms of non-contact ACL injuries[J]. Br J Sports Med,2007, 41 Suppl 1(Suppl 1): i47-i51.
[38] Jeong J, Choi DH, Shin CS. Core strength training can alter neuromuscular and biomechanical risk factors for anterior cruciate ligament injury[J]. Am J Sports Med, 2021, 49(1): 183-192.
[39] Ceyssens L, Vanelderen R, Barton C, et al. Biomechanical risk factors associated with running-related injuries: a systematic review[J]. Sports Med, 2019, 49(7): 1095-1115.
[40] Hutchinson LA, Lichtwark GA, Willy RW, et al. The iliotibial band:a complex structure with versatile functions[J]. Sports Med, 2022, 52(5): 995-1008.
[41] Willinger L, Balendra G, Pai V, et al. High incidence of superficial and deep medial collateral ligament injuries in ’isolated’ anterior cruciate ligament ruptures: a long overlooked injury[J]. Knee Surg Sports Traumatol Arthrosc, 2022, 30(1): 167-175.
[42] Miyaji N, Holthof SR, Ball SV, et al. Medial collateral ligament reconstruction for anteromedial instability of the knee: a biomechanical study in vitro[J]. Am J Sports Med, 2022, 50(7): 1823-1831.
[43] Zabrzyński J, Huri G, Yataganbaba A, et al. Current concepts on the morphology of popliteus tendon and its clinical implications[J]. Folia Morphol (Warsz), 2021, 80(3): 505-513.
[44] Miklovic TM, Donovan L, Protzuk OA, et al. Acute lateral ankle sprain to chronic ankle instability: a pathway of dysfunction[J]. Phys Sportsmed, 2018, 46(1): 116-122.
[45] Jeon HG, Lee SY, Park SE, et al. Ankle instability patients exhibit altered muscle activation of lower extremity and ground reaction force during landing: a systematic review and meta-analysis[J]. J Sports Sci Med, 2021, 20(2): 373-390.