索引超出了数组界限。
[1] Sherman SL, Thyssen E, Nuelle CW. Osteochondral autologous
transplantation[J]. Clin Sports Med, 2017, 36(3): 489-500.
[2] Frehner F, Benthien JP. Microfracture: state of the art in cartilage
surgery?[J]. Cartilage, 2018, 9(4): 339-345.
[3] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from
mouse embryonic and adult fibroblast cultures by defined factors[J].
Cell, 2006, 126(4): 663-676.
[4] Lach MS, Rosochowicz MA, Richter M, et al. The induced
pluripotent stem cells in articular cartilage regeneration and disease
modelling: are we ready for their clinical use?[J]. Cells, 2022, 11(3):
529.
[5] Abujarour R, Valamehr B, Robinson M, et al. Optimized surface
markers for the prospective isolation of high-quality hiPSCs using
flow cytometry selection[J]. Sci Rep, 2013, 3: 1179.
[6] Xu H, Wang B, Ono M, et al. Targeted disruption of HLA genes
via CRISPR-Cas9 generates iPSCs with enhanced immune
compatibility[J]. Cell Stem Cell, 2019, 24(4): 566-578.
[7] 冯顶丽, 卓丽丹, 芦笛, 等. 人诱导多能干细胞体外多向分化能力
的方法验证[J]. 武警医学, 2019, 30(4): 303-307.
[8] Hochedlinger K, Jaenisch R. Nuclear reprogramming and
pluripotency[J]. Nature, 2006, 441(7097): 1061-1067.
[9] Rodríguez Ruiz A, Dicks A, Tuerlings M, et al. Cartilage from
human-induced pluripotent stem cells: comparison with neo-cartilage
from chondrocytes and bone marrow mesenchymal stromal cells[J].
Cell Tissue Res, 2021, 386(2): 309-320.
[10] Chijimatsu R, Ikeya M, Yasui Y, et al. Characterization of
mesenchymal stem cell-like cells derived from human iPSCs via
neural crest development and their application for osteochondral
repair[J]. Stem Cells Int, 2017, 2017: 1960965.
[11] Kawata M, Mori D, Kanke K, et al. Simple and robust differentiation
of human pluripotent stem cells toward chondrocytes by two smallmolecule
compounds[J]. Stem Cell Reports, 2019, 13(3): 530-544.
[12] Ferguson GB, Van Handel B, Bay M, et al. Mapping molecular
landmarks of human skeletal ontogeny and pluripotent stem cellderived
articular chondrocytes[J]. Nat Commun, 2018, 9(1):
3634.
[13] Adkar SS, Wu CL, Willard VP, et al. Step-wise chondrogenesis of
human induced pluripotent stem cells and purification via a reporter
allele generated by CRISPR-Cas9 genome editing[J]. Stem Cells,
2019, 37(1): 65-76.
[14] Zhu Y, Wu X, Liang Y, et al. Repair of cartilage defects in
osteoarthritis rats with induced pluripotent stem cell derived
chondrocytes[J]. BMC Biotechnol, 2016, 16(1): 78.
[15] Rim YA, Nam Y, Park N, et al. Chondrogenic differentiation from
induced pluripotent stem cells using non-viral minicircle vectors[J].
Cells, 2020, 9(3): 582.
[16] Craft AM, Rockel JS, Nartiss Y, et al. Generation of articular
chondrocytes from human pluripotent stem cells[J]. Nat Biotechnol,
2015, 33(6): 638-645.
[17] Chang YH, Wu KC, Ding DC. Induced pluripotent stem celldifferentiated
chondrocytes repair cartilage defect in a rabbit
osteoarthritis model[J]. Stem Cells Int, 2020, 2020: 8867349.
[18] Ko JY, Kim KI, Park S, et al. In vitro chondrogenesis and in vivo
repair of osteochondral defect with human induced pluripotent stem
cells[J]. Biomaterials, 2014, 35(11): 3571-3581.
[19] Dubey NK, Mishra VK, Dubey R, et al. Combating osteoarthritis
through stem cell therapies by rejuvenating cartilage: a review[J].
Stem Cells Int, 2018, 2018: 5421019.
[20] Yamashita A, Morioka M, Yahara Y, et al. Generation of scaffoldless
hyaline cartilaginous tissue from human iPSCs[J]. Stem Cell Reports,
2015, 4(3): 404-418.
[21] Rim YA, Nam Y, Park N, et al. Different chondrogenic potential
among human induced pluripotent stem cells from diverse origin
primary cells[J]. Stem Cells Int, 2018, 2018: 9432616.
[22] Xu X, Shi D, Liu Y, et al. In vivo repair of full-thickness cartilage
defect with human iPSC-derived mesenchymal progenitor cells in a
rabbit model[J]. Exp Ther Med, 2017, 14(1): 239-245.
[23] Gorecka J, Kostiuk V, Fereydooni A, et al. The potential and
limitations of induced pluripotent stem cells to achieve wound
healing[J]. Stem Cell Res Ther, 2019, 10(1): 87.
[24] Mitchell A, Wanczyk H, Jensen T, et al. Assessment of iPSC
teratogenicity throughout directed differentiation toward an alveolarlike
phenotype[J]. Differentiation, 2019, 105: 45-53.