索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]曹建泽,张杰,刘永飞,等.水凝胶在骨组织工程中的应用进展[J].国际骨科学杂志,2023,05:314-317.
点击复制

水凝胶在骨组织工程中的应用进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2023年05期
页码:
314-317
栏目:
综述
出版日期:
2023-09-30

文章信息/Info

Title:
-
作者:
曹建泽张杰刘永飞赵海燕
730000, 兰州大学第一临床医学院骨科
Author(s):
-
关键词:
水凝胶杂化纳米颗粒水凝胶骨再生骨组织修复
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn. 1673-7083.2023.05.010
文献标识码:
-
摘要:
骨缺损是骨科的常见疾病之一,随着骨组织工程技术的不断发展与进步,越来越多的骨修复材料被应用于 临床,为骨组织修复提供了新型的治疗策略。水凝胶因具有良好的生物相容性和生物降解性,有望成为一种有潜力 的骨组织修复材料。近年来,更多有关水凝胶的研究和应用聚焦于对水凝胶进行改性。改性后的水凝胶一方面可以 更高效地释放负载因子并发挥作用,另一方面其力学性能也变得更优异,从而更符合组织工程支架的要求。该文就 近年来在新型杂化纳米颗粒水凝胶负载细胞因子促进骨修复、水凝胶预防和治疗骨科细菌感染及开发性能更好的骨 组织工程支架和3D 打印支架等方面的最新进展进行综述。
Abstract:
-

参考文献/References

[1] Li Y, Cao J, Han S, et al. ECM based injectable thermo-sensitive hydrogel on the recovery of injured cartilage induced by osteoarthritis[J]. Artif Cells Nanomed Biotechnol, 2018, 46(Suppl 2): S152-S160.
[2] Keating JF, Simpson AH, Robinson CM. The management of fractures with bone loss[J]. J Bone Joint Surg Br, 2005, 87(2): 142- 150.
[3] Filipowska J, Tomaszewski KA, Nied?wiedzki ?, et al. The role of vasculature in bone development, regeneration and proper systemic functioning[J]. Angiogenesis, 2017, 20(3): 291-302.
[4] Lee EJ, Jain M, Alimperti S. Bone microvasculature: stimulus for tissue function and regeneration[J]. Tissue Eng Part B Rev, 2021, 27(4): 313-329.
[5] Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering[J]. Bone Res, 2017, 5: 17014.
[6] Zhao Z, Sun Y, Qiao Q, et al. Human periodontal ligament stem cell and umbilical vein endothelial cell co-culture to prevascularize scaffolds for angiogenic and osteogenic tissue engineering[J]. Int J Mol Sci, 2021, 22(22): 12363..
[7] Ghiorghita CA, Humelnicu D, Dinu MV, et al. Polyelectrolyte complex composite cryogels with self-antibacterial properties and wide window for simultaneous removal of multiple contaminants[J]. CHEM ENG J, 2023, 459.
[8] Yu T, Hu Y, He W, et al. An injectable and self-healing hydrogel with dual physical crosslinking for in-situ bone formation[J]. Materials Today Bio, 2023, 19: 100558.
[9] Hoffman AS. Hydrogels for biomedical applications[J]. Adv Drug Deliv Rev, 2002, 54(1): 3-12.
[10] Ullah F, Othman MB, Javed F, et al. Classification, processing and application of hydrogels: a review[J]. Mater Sci Eng C Mater Biol Appl, 2015, 57: 414-433.
[11] Thakur VK, Thakur MK. Recent advances in green hydrogels from lignin: a review[J]. Int J Biol Macromol, 2015, 72: 834-847.
[12] Liu R, Dai L, Xu C, et al. Lignin-based micro- and nanomaterials and their composites in biomedical applications[J]. Chem Sus Chem, 2020, 13(17): 4266-4283.
[13] Sikdar P, Uddin MM, Dip TM, et al. Recent advances in the synthesis of smart hydrogels[J]. Materials Advances, 2021, 2(14): 4532-4573.
[14] Li G, Chen J, Yan Z, et al. Physical crosslinked hydrogelderived smart windows: anti-freezing and fast thermal responsive performance[J]. Mater Horiz, 2023, 10(6): 2004-2012.
[15] Mu?ana-González S, Veloso-Fernández A, Ruiz-Rubio L, et al. Covalent cross-linking as a strategy to prepare water-dispersible chitosan nanogels[J]. Polymers (Basel), 2023, 15(2): 434.
[16] Lagneau N, Terriac L, Tournier P, et al. A new boronate ester-based crosslinking strategy allows the design of nonswelling and long-term stable dynamic covalent hydrogels[J]. Biomater Sci, 2023, 11(6): 2033-2045.
[17] Liu B, Gu X, Sun Q, et al. Injectable in situ induced robust hydrogel for photothermal therapy and bone fracture repair[J]. Adv Funct Mater, 2021, 31(19).
[18] Wang Y, Malcolm DW, Benoit DSW. Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing[J]. Biomaterials, 2017, 139: 127-138.
[19] Teh SW, Koh AE, Tong JB, et al. Hypoxia in bone and oxygen releasing biomaterials in fracture treatments using mesenchymal stem cell therapy: a review[J]. Front Cell Dev Biol, 2021, 9: 634131.
[20] Sun H, Xu J, Wang Y, et al. Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair[J]. Bioact Mater, 2023, 24: 477-496.
[21] Wang Y, Xie C, Zhang Z, et al. 3D printed integrated bionic oxygenated scaffold for bone regeneration[J]. ACS Appl Mater Interfaces, 2022, 14(26): 29506-29520.
[22] 张青, 马慧娜. 大肠埃希菌生物膜形成与耐药机制的研究进展[J]. 中国抗生素杂志, 2018, 43(5): 497-501.
[23] Johnson CT, Wroe JA, Agarwal R, et al. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing[J]. Proc Natl Acad Sci U S A, 2018, 115(22): E4960-E4969.
[24] Liu Y, Dong T, Chen Y, et al. Biodegradable and cytocompatible hydrogel coating with antibacterial activity for the prevention of implant-associated infection[J]. ACS Appl Mater Interfaces, 2023, 15(9): 11507-11519.
[25] Yu C, Chen L, Zhou W, et al. Injectable bacteria-sensitive hydrogel promotes repair of infected fractures via sustained release of mirna antagonist[J]. ACS Appl Mater Interfaces, 2022, 14(30): 34427- 34442.
[26] Liu P, Xiong Y, Chen L, et al. Angiogenesis-based diabetic skin reconstruction through multifunctional hydrogel with sustained releasing of M2 Macrophage-derived exosome[J]. Chem Eng J, 2022, 431.: 132413.
[27] Haugen HJ, Lyngstadaas SP, Rossi F, et al. Bone grafts: which is the ideal biomaterial?[J]. J Clin Periodontol, 2019, 46 Suppl 21: 92-102.
[28] Ansari MAA, Golebiowska AA, Dash M, et al. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration[J]. Biomater Sci, 2022, 10(11): 2789-2816.
[29] Wu T, Liu L, Gao Z, et al. Extracellular matrix (ECM)-inspired highstrength gelatin-alginate based hydrogels for bone repair[J]. Biomater Sci, 2023, 11(8): 2877-2885.
[30] Liu C, Dai T, Wu X, et al. 3D bioprinting of cell-laden nanoattapulgite/ gelatin methacrylate composite hydrogel scaffolds for bone tissue repair[J]. J Mater Sci Technol, 2023, 135: 111-125.
[31] Kara A, Distler T, Polley C, et al. 3D printed gelatin/decellularized bone composite scaffolds for bone tissue engineering: fabrication, characterization and cytocompatibility study[J]. Mater Today Bio, 2022, 15: 100309.
[32] Xu Z, Lin B, Zhao C, et al. Lanthanum doped octacalcium phosphate/ polylactic acid scaffold fabricated by 3D printing for bone tissue engineering[J]. J Mater Sci Technol, 2022, 118: 229-242.
[33] Pan T, Song W, Xin H, et al. MicroRNA-activated hydrogel scaffold generated by 3D printing accelerates bone regeneration[J]. Bioact Mater, 2022, 10: 1-14.
[34] Gang F, Ye W, Ma C, et al. 3D Printing of PLLA/biomineral composite bone tissue engineering scaffolds[J]. Materials (Basel), 2022, 15(12): 4280.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金(82060394)、甘肃省自然科学基金 (20JR10RA673)、兰州市人才创新创业项目(2020-RC-45)、兰州大学第一 医院院内基金(ldyyyn2019-01)
通信作者: 赵海燕 E-mail : zhaohaiyan8606@163.com
更新日期/Last Update: 2023-09-30