索引超出了数组界限。
[1] Li Y, Cao J, Han S, et al. ECM based injectable thermo-sensitive
hydrogel on the recovery of injured cartilage induced by
osteoarthritis[J]. Artif Cells Nanomed Biotechnol, 2018, 46(Suppl 2):
S152-S160.
[2] Keating JF, Simpson AH, Robinson CM. The management of
fractures with bone loss[J]. J Bone Joint Surg Br, 2005, 87(2): 142-
150.
[3] Filipowska J, Tomaszewski KA, Nied?wiedzki ?, et al. The role of
vasculature in bone development, regeneration and proper systemic
functioning[J]. Angiogenesis, 2017, 20(3): 291-302.
[4] Lee EJ, Jain M, Alimperti S. Bone microvasculature: stimulus for
tissue function and regeneration[J]. Tissue Eng Part B Rev, 2021,
27(4): 313-329.
[5] Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and
bone tissue engineering[J]. Bone Res, 2017, 5: 17014.
[6] Zhao Z, Sun Y, Qiao Q, et al. Human periodontal ligament stem
cell and umbilical vein endothelial cell co-culture to prevascularize
scaffolds for angiogenic and osteogenic tissue engineering[J]. Int J
Mol Sci, 2021, 22(22): 12363..
[7] Ghiorghita CA, Humelnicu D, Dinu MV, et al. Polyelectrolyte
complex composite cryogels with self-antibacterial properties and
wide window for simultaneous removal of multiple contaminants[J].
CHEM ENG J, 2023, 459.
[8] Yu T, Hu Y, He W, et al. An injectable and self-healing hydrogel with
dual physical crosslinking for in-situ bone formation[J]. Materials
Today Bio, 2023, 19: 100558.
[9] Hoffman AS. Hydrogels for biomedical applications[J]. Adv Drug
Deliv Rev, 2002, 54(1): 3-12.
[10] Ullah F, Othman MB, Javed F, et al. Classification, processing and
application of hydrogels: a review[J]. Mater Sci Eng C Mater Biol
Appl, 2015, 57: 414-433.
[11] Thakur VK, Thakur MK. Recent advances in green hydrogels from
lignin: a review[J]. Int J Biol Macromol, 2015, 72: 834-847.
[12] Liu R, Dai L, Xu C, et al. Lignin-based micro- and nanomaterials
and their composites in biomedical applications[J]. Chem Sus Chem,
2020, 13(17): 4266-4283.
[13] Sikdar P, Uddin MM, Dip TM, et al. Recent advances in the synthesis
of smart hydrogels[J]. Materials Advances, 2021, 2(14): 4532-4573.
[14] Li G, Chen J, Yan Z, et al. Physical crosslinked hydrogelderived
smart windows: anti-freezing and fast thermal responsive
performance[J]. Mater Horiz, 2023, 10(6): 2004-2012.
[15] Mu?ana-González S, Veloso-Fernández A, Ruiz-Rubio L, et al.
Covalent cross-linking as a strategy to prepare water-dispersible
chitosan nanogels[J]. Polymers (Basel), 2023, 15(2): 434.
[16] Lagneau N, Terriac L, Tournier P, et al. A new boronate ester-based
crosslinking strategy allows the design of nonswelling and long-term
stable dynamic covalent hydrogels[J]. Biomater Sci, 2023, 11(6):
2033-2045.
[17] Liu B, Gu X, Sun Q, et al. Injectable in situ induced robust hydrogel
for photothermal therapy and bone fracture repair[J]. Adv Funct
Mater, 2021, 31(19).
[18] Wang Y, Malcolm DW, Benoit DSW. Controlled and sustained
delivery of siRNA/NPs from hydrogels expedites bone fracture
healing[J]. Biomaterials, 2017, 139: 127-138.
[19] Teh SW, Koh AE, Tong JB, et al. Hypoxia in bone and oxygen
releasing biomaterials in fracture treatments using mesenchymal stem
cell therapy: a review[J]. Front Cell Dev Biol, 2021, 9: 634131.
[20] Sun H, Xu J, Wang Y, et al. Bone microenvironment regulative
hydrogels with ROS scavenging and prolonged oxygen-generating
for enhancing bone repair[J]. Bioact Mater, 2023, 24: 477-496.
[21] Wang Y, Xie C, Zhang Z, et al. 3D printed integrated bionic
oxygenated scaffold for bone regeneration[J]. ACS Appl Mater
Interfaces, 2022, 14(26): 29506-29520.
[22] 张青, 马慧娜. 大肠埃希菌生物膜形成与耐药机制的研究进展[J].
中国抗生素杂志, 2018, 43(5): 497-501.
[23] Johnson CT, Wroe JA, Agarwal R, et al. Hydrogel delivery of
lysostaphin eliminates orthopedic implant infection by Staphylococcus
aureus and supports fracture healing[J]. Proc Natl Acad Sci U S A,
2018, 115(22): E4960-E4969.
[24] Liu Y, Dong T, Chen Y, et al. Biodegradable and cytocompatible
hydrogel coating with antibacterial activity for the prevention of
implant-associated infection[J]. ACS Appl Mater Interfaces, 2023,
15(9): 11507-11519.
[25] Yu C, Chen L, Zhou W, et al. Injectable bacteria-sensitive hydrogel
promotes repair of infected fractures via sustained release of mirna
antagonist[J]. ACS Appl Mater Interfaces, 2022, 14(30): 34427-
34442.
[26] Liu P, Xiong Y, Chen L, et al. Angiogenesis-based diabetic skin
reconstruction through multifunctional hydrogel with sustained
releasing of M2 Macrophage-derived exosome[J]. Chem Eng J, 2022,
431.: 132413.
[27] Haugen HJ, Lyngstadaas SP, Rossi F, et al. Bone grafts: which is the
ideal biomaterial?[J]. J Clin Periodontol, 2019, 46 Suppl 21: 92-102.
[28] Ansari MAA, Golebiowska AA, Dash M, et al. Engineering
biomaterials to 3D-print scaffolds for bone regeneration: practical and
theoretical consideration[J]. Biomater Sci, 2022, 10(11): 2789-2816.
[29] Wu T, Liu L, Gao Z, et al. Extracellular matrix (ECM)-inspired highstrength
gelatin-alginate based hydrogels for bone repair[J]. Biomater
Sci, 2023, 11(8): 2877-2885.
[30] Liu C, Dai T, Wu X, et al. 3D bioprinting of cell-laden nanoattapulgite/
gelatin methacrylate composite hydrogel scaffolds for
bone tissue repair[J]. J Mater Sci Technol, 2023, 135: 111-125.
[31] Kara A, Distler T, Polley C, et al. 3D printed gelatin/decellularized
bone composite scaffolds for bone tissue engineering: fabrication,
characterization and cytocompatibility study[J]. Mater Today Bio,
2022, 15: 100309.
[32] Xu Z, Lin B, Zhao C, et al. Lanthanum doped octacalcium phosphate/
polylactic acid scaffold fabricated by 3D printing for bone tissue
engineering[J]. J Mater Sci Technol, 2022, 118: 229-242.
[33] Pan T, Song W, Xin H, et al. MicroRNA-activated hydrogel scaffold
generated by 3D printing accelerates bone regeneration[J]. Bioact
Mater, 2022, 10: 1-14.
[34] Gang F, Ye W, Ma C, et al. 3D Printing of PLLA/biomineral
composite bone tissue engineering scaffolds[J]. Materials (Basel),
2022, 15(12): 4280.