索引超出了数组界限。
[1] Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019,
393(10182): 1745-1759.
[2] Yang J, Hu S, Bian Y, et al. Targeting cell death: pyroptosis,
ferroptosis, apoptosis and necroptosis in osteoarthritis[J]. Front Cell
Dev Biol, 2022, 9: 789948.
[3] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an irondependent
form of nonapoptotic cell death[J]. Cell, 2012, 149(5):
1060-1072.
[4] Chen X, Comish PB, Tang D, et al. Characteristics and biomarkers of
ferroptosis[J]. Front Cell Dev Biol, 2021, 9: 637162.
[5] Jing X, Du T, Li T, et al. The detrimental effect of iron on OA
chondrocytes: importance of pro-inflammatory cytokines induced
iron influx and oxidative stress[J]. J Cell Mol Med, 2021, 25(12):
5671-5680.
[6] 黎淼, 何琪, 曾嘉旭, 等. 骨科相关疾病发生发展中的铁超载[J].
中国组织工程研究, 2023, 27(17): 2723-2728.
[7] Yazar M, Sarban S, Kocyigit A, et al. Synovial fluid and plasma
selenium, copper, zinc, and iron concentrations in patients with
rheumatoid arthritis and osteoarthritis[J]. Biol Trace Elem Res, 2005,
106(2): 123-132.
[8] Miao Y, Chen Y, Xue F, et al. Contribution of ferroptosis and GPX4's
dual functions to osteoarthritis progression[J]. EBioMedicine, 2022,
76: 103847.
[9] Burton LH, Radakovich LB, Marolf AJ, et al. Systemic iron overload
exacerbates osteoarthritis in the strain 13 guinea pig[J]. Osteoarthritis
Cartilage, 2020, 28(9): 1265-1275.
[10] Nugzar O, Zandman-Goddard G, Oz H, et al. The role of ferritin and
adiponectin as predictors of cartilage damage assessed by arthroscopy
in patients with symptomatic knee osteoarthritis[J]. Best Pract Res
Clin Rheumatol, 2018, 32(5): 662-668.
[11] Kennish L, Attur M, Oh C, et al. Age-dependent ferritin elevations
and HFE C282Y mutation as risk factors for symptomatic knee
osteoarthritis in males: a longitudinal cohort study[J]. BMC
Musculoskel Dis, 2014, 15: 8.
[12] Wu L, Si H, Zeng Y, et al. Association between iron intake and
progression of knee osteoarthritis[J]. Nutrients, 2022, 14(8): 1674
[13] Sun K, Guo Z, Hou L, et al. Iron homeostasis in arthropathies: from
pathogenesis to therapeutic potential[J]. Ageing Res Rev, 2021, 72:
101481.
[14] Grigolo B, Roseti L, Fiorini M, et al. Enhanced lipid peroxidation in
synoviocytes from patients with osteoarthritis[J]. J Rheumatol, 2003,
30(2): 345-347.
[15] Shah R, Raska K Jr, Tiku ML. The presence of molecular markers of
in vivo lipid peroxidation in osteoarthritic cartilage: a pathogenic role
in osteoarthritis[J]. Arthritis Rheumatol, 2005, 52(9): 2799-2807.
[16] Gavriilidis C, Miwa S, von Zglinicki T, et al. Mitochondrial
dysfunction in osteoarthritis is associated with down-regulation of
superoxide dismutase 2[J]. Arthritis Rheumatol, 2013, 65(2): 378-
387.
[17] Liu X, Wang T, Wang W, et al. Emerging potential therapeutic targets
of ferroptosis in skeletal diseases[J]. Oxid Med Cell Longev, 2022,
2022: 3112388.
[18] Lv M, Cai Y, Hou W, et al. The RNA-binding protein SND1 promotes
the degradation of GPX4 by destabilizing the HSPA5 mRNA and
suppressing HSPA5 expression, promoting ferroptosis in osteoarthritis
chondrocytes[J]. Inflamm Res, 2022, 71(4): 461-472.
[19] Yao X, Sun K, Yu S, et al. Chondrocyte ferroptosis contribute to the
progression of osteoarthritis[J]. J Orthop Translat, 2020, 27: 33-43.
[20] Guo Z, Lin J, Sun K, et al. Deferoxamine alleviates osteoarthritis by
inhibiting chondrocyte ferroptosis and activating the Nrf2 pathway[J].
Front Pharmacol, 2022,13: 791376.
[21] Mo Z, Xu P, Li H. Stigmasterol alleviates interleukin-1beta-induced
chondrocyte injury by down-regulatingsterol regulatory element
binding transcription factor 2 to regulateferroptosis[J]. Bioengineered,
2021, 12(2): 9332-9340.
[22] Zhang S, Xu J, Si H, et al. The role played by ferroptosis in
osteoarthritis: evidence based on iron dyshomeostasis and lipid
peroxidation[J]. Antioxidants (Basel), 2022, 11(9): 1668.
[23] Radakovich LB, Burton LH, Culver LA, et al. Systemic iron reduction
via an iron deficient diet decreases the severity of knee cartilage
lesions in the Dunkin-Hartley guinea pig model of osteoarthritis[J].
Osteoarthritis Cartilage, 2022, 30(11): 1482-1494
[24] Peng CY, Hu L, Wu ZJ, et al. Effects of moxibustion on p53,
SLC7A11,and GPX4 expression in synovial tissues of rats with
adjuvant arthritis[J]. Zhen ci yan jiu, 2022, 47(1): 21-26.
[25] Luo H, Zhang R. Icariin enhances cell survival in lipopolysaccharideinduced
synoviocytes by suppressing ferroptosis via the Xc-/GPX4
axis[J]. Exp Ther Med, 2021, 21(1): 72.
[26] Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase
FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019,
575(7784): 688-692.
[27] Wang X, Liu Z, Peng P, et al. Astaxanthin attenuates osteoarthritis
progression via inhibiting ferroptosis and regulating mitochondrial
function in chondrocytes[J]. Chem Biol Interact, 2022, 366: 110148.
[28] Zhou X, Zheng Y, Sun W, et al. D-mannose alleviates osteoarthritis
progression by inhibiting chondrocyte ferroptosis in a HIF-2α-
dependent manner[J]. Cell Prolif, 2021, 54(11): e13134.
[29] Sanada Y, Tan SJO, Adachi N, et al.Pharmacological targeting of
heme oxygenase-1 in osteoarthritis[J]. Antioxidants (Basel), 2021,
10(3): 419.
[30] Pan Z, He Q, Zeng J, et al. Naringenin protects against iron
overload-induced osteoarthritis by suppressing oxidative stress[J].
Phytomedicine, 2022, 105: 154330.
[31] Chang S, Tang M, Zhang B, et al. Ferroptosis in inflammatory
arthritis: a promising future[J]. Front Immunol, 2022, 13: 955069.
[32] Deng F, Zhao BC, Yang X, et al. The gut microbiota metabolite
capsiate promotes Gpx4 expression by activating TRPV1 to inhibit
intestinal ischemia reperfusion-induced ferroptosis[J]. Gut microbes,
2021, 13(1): 1-21.
[33] Lv Z, Han J, Li J, et al. Single cell RNA-seq analysis identifies
ferroptotic chondrocyte cluster and reveals TRPV1 as an antiferroptotic
target in osteoarthritis[J]. EBioMedicine, 2022, 84:
104258.
[34] Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease
relevance of ferroptosis[J]. Trends Cell Biol, 2020, 30(6): 478-490.
[35] Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent
ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698.
[36] 陆会平, 党裔武, 陈罡. 铁死亡抑制蛋白1 在人类疾病中的作用
机制研究进展[J]. 解放军医学杂志, 2021, 46(7): 731-736.