索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]孟董超,刘海峰,赵轶波,等.脊柱侧凸动物模型制造方法研究进展[J].国际骨科学杂志,2023,05:290-284.
点击复制

脊柱侧凸动物模型制造方法研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2023年05期
页码:
290-284
栏目:
综述
出版日期:
2023-09-30

文章信息/Info

Title:
-
作者:
孟董超刘海峰赵轶波赵斌
030001 山西太原, 山西医科大学(孟董超、刘海峰); 030001 山西太原, 山西医科大学第二医院骨科(赵轶波、赵斌)
Author(s):
-
关键词:
脊柱侧凸动物模型造模方法基因编辑
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn. 1673-7083.2023.05.005
文献标识码:
-
摘要:
脊柱侧凸是一种人类脊柱在三维结构上出现多曲性侧方移位伴椎体旋转的疾病,其发病机制涉及的因素 众多,目前仍不能完全明确。由于伦理的要求和实验内容的限制,脊柱侧凸的相关实验无法直接在人类身上进行,而 在动物模型中可以预先进行疾病机制、治疗方法等多方面的探索和研究,获得大量样本数据并进行初步筛查和选择, 这为疾病研究奠定了坚实的基础,因此动物模型也成为此疾病研究的重要工具。该文就脊柱侧凸动物模型制造方法 研究进展进行综述。
Abstract:
-

参考文献/References

[1] Ouellet J, Odent T. Animal models for scoliosis research: state of the art, current concepts and future perspective applications[J]. Eur Spine J, 2013, 22 (Suppl 2): S81-S95.
[2] Bobyn JD, Little DG, Gray R, et al. Animal models of scoliosis[J]. J Orthop Res, 2015, 33(4): 458-467.
[3] Meiring AR, de Kater EP, Stadhouder A, et al. Current models to understand the onset and progression of scoliotic deformities in adolescent idiopathic scoliosis: a systematic review[J]. Spine Deform, 2023, 11(3): 545-558.
[4] Liang ZT, Guo CF, Li J, et al. The role of endocrine hormones in the pathogenesis of adolescent idiopathic scoliosis[J]. FASEB J, 2021, 35(9): e21839.
[5] Yang S, Zheng C, Jiang J, et al. The value of applying a melatonin antagonist (Luzindole) in improving the success rate of the bipedal rat scoliosis model[J]. BMC Musculoskelet Disord, 2017, 18(1): 137.
[6] Man GC, Wang WW, Yim AP, et al. A review of pinealectomyinduced melatonin-deficient animal models for the study of etiopathogenesis of adolescent idiopathic scoliosis[J]. Int J Mol Sci, 2014, 15(9): 16484-16499.
[7] Kulis A, Go?dzialska A, Dr?g J, et al. Participation of sex hormones in multifactorial pathogenesis of adolescent idiopathic scoliosis[J]. Int Orthop, 2015, 39(6): 1227-1236.
[8] Peng Y, Wang SR, Qiu GX, et al. Research progress on the etiology and pathogenesis of adolescent idiopathic scoliosis[J]. Chin Med J (Engl), 2020, 133(4): 483-493.
[9] Wise CA, Sepich D, Ushiki A, et al. The cartilage matrisome in adolescent idiopathic scoliosis[J]. Bone Res, 2020, 8: 13.
[10] Xie H, Li M, Kang Y, et al. Zebrafish: an important model for understanding scoliosis[J]. Cell Mol Life Sci, 2022, 79(9): 506.
[11] Skuplik I, Cobb J. Animal models for understanding human skeletal defects[J]. Adv Exp Med Biol, 2020, 1236: 157-188.
[12] 沈晓龙, 周许辉, 刘洋, 等. A 型肉毒毒素一侧椎旁肌注射建立双 足直立鼠脊柱侧凸模型的初步研究[J]. 中国脊柱脊髓杂志, 2012, 22(9): 824-828.
[13] Wang BY, Hsiao AW, Wong N, et al. Is dexamethasone-induced muscle atrophy an alternative model for naturally aged sarcopenia model?[J]. J Orthop Translat, 2022, 39: 12-20.
[14] Peng H, Jin F, Meng D, et al. Exploring the pathological role of collagen in paravertebral muscle in the progression of idiopathic scoliosis[J]. Biomed Res Int, 2020, 2020: 1527403.
[15] Venzin OF, Oates AC. What are you synching about? Emerging complexity of Notch signaling in the segmentation clock[J]. Dev Biol, 2020, 460(1): 40-54.
[16] Sparrow DB, Chapman G, Smith AJ, et al. A mechanism for geneenvironment interaction in the etiology of congenital scoliosis[J]. Cell, 2012, 149(2): 295-306.
[17] Liu L, Zhu Y, Han X, et al. The creation of scoliosis by scapulato- contralateral ilium tethering procedure in bipedal rats: a kyphoscoliosis model[J]. Spine (Phila Pa 1976), 2011, 36(17): 1340- 1349.
[18] Zhang Y, Shi Z, Li W, et al. A porcine model of early-onset scoliosis combined with thoracic insufficiency syndrome: construction and transcriptome analysis[J]. Gene, 2023, 858: 147202.
[19] Newton PO. Spinal growth tethering: indications and limits[J]. Ann Transl Med, 2020, 8(2): 27.
[20] Latalski M, Szponder T, Starobrat G, et al. Reactivation of vertebral growth plate function in vertebral body tethering in an animal model[J]. Int J Mol Sci, 2022, 23(19): 11596.
[21] Domenech J, Barrios C, Tormos JM, et al. Somatosensory cortectomy induces motor cortical hyperexcitability and scoliosis: an experimental study in developing rats[J]. Spine J, 2013, 13(8): 938- 946.
[22] Gordy C, Straka H. Vestibular influence on vertebrate skeletal symmetry and body shape[J]. Front Syst Neurosci, 2021, 15: 753207.
[23] Liebsch C, Wilke HJ. How does the rib cage affect the biomechanical properties of the thoracic spine? A systematic literature review[J]. Front Bioeng Biotechnol, 2022, 10: 904539.
[24] Cervera-Irimia J, González-Miranda ?, Riquelme-García ?, et al. Scoliosis induced by costotransversectomy in minipigs model[J]. Med Glas (Zenica), 2019, 16(2): 184-190.
[25] Wen J, Wang D, Fang K, et al. Effect of neurocentral cartilage destruction on spinal growth in immature rabbits[J]. J Int Med Res, 2019, 47(2): 951-961.
[26] 赵检. 成人脊柱畸形术后近端交界性后凸的影响因素分析及刚度 渐变结构对其预防的生物力学机制研究[D]. 上海:中国人民解 放军海军军医大学, 2020.
[27] Claussnitzer M, Cho JH, Collins R, et al. A brief history of human disease genetics[J]. Nature, 2020, 577(7789): 179-189.
[28] Liu Z, Ramachandran J, Vokes SA, et al. Regulation of terminal hypertrophic chondrocyte differentiation in Prmt5 mutant mice modeling infantile idiopathic scoliosis[J]. Dis Model Mech, 2019, 12(12): dmm041251.
[29] Ulici V, Kelley KL, Longobardi L, et al. Impaired annulus fibrosus development and vertebral fusion cause severe scoliosis in mice with deficiency of c-Jun NH2-terminal kinases 1 and 2[J]. Am J Pathol, 2019, 189(4): 868-885.
[30] Kodama K, Takahashi H, Oiji N, et al. CANT1 deficiency in a mouse model of Desbuquois dysplasia impairs glycosaminoglycan synthesis and chondrocyte differentiation in growth plate cartilage[J]. FEBS Open Bio, 2020, 10(6): 1096-1103.
[31] Wu Z, Dai Z, Yuwen W, et al. Genetic variants of CHD7 are associated with adolescent idiopathic scoliosis[J]. Spine (Phila Pa 1976), 2021, 46(11): E618-E624.
[32] Ishiwata S, Iizuka H, Sonoda H, et al. Upregulated miR-224- 5p suppresses osteoblast differentiation by increasing the expression of Pai-1 in the lumbar spine of a rat model of congenital kyphoscoliosis[J]. Mol Cell Biochem, 2020, 475(1-2): 53-62.
[33] Liu Y, Pan A, Hai Y, et al. A symmetric biomechanical characteristics of the paravertebral muscle in adolescent idiopathic scoliosis[J]. Clin Biomech (Bristol, Avon), 2019, 65: 81-86.
[34] Lleras-Forero L, Newham E, Teufel S, et al. Muscle defects due to perturbed somite segmentation contribute to late adult scoliosis[J]. Aging (Albany NY), 2020, 12(18): 18603-18621.
[35] Agarwal M, Sharma A, Kumar P, et al. Myosin heavy chainembryonic regulates skeletal muscle differentiation during mammalian development[J]. Development, 2020, 147(7): dev184507.
[36] Asahina M, Fujinawa R, Nakamura S, et al. Ngly1 -/- rats develop neurodegenerative phenotypes and pathological abnormalities in their peripheral and central nervous systems[J]. Hum Mol Genet, 2020, 29(10): 1635-1647.
[37] Assaraf E, Blecher R, Heinemann-Yerushalmi L, et al. Piezo2 expressed in proprioceptive neurons is essential for skeletal integrity[J]. Nat Commun, 2020, 11(1): 3168.
[38] Harfe BD. Intervertebral disc repair and regeneration: insights from the notochord[J]. Semin Cell Dev Biol, 2022, 127: 3-9.
[39] Bagwell J, Norman J, Ellis K, et al. Notochord vacuoles absorb compressive bone growth during zebrafish spine formation[J]. Elife, 2020, 9: e51221.
[40] Sun X, Zhou Y, Zhang R, et al. Dstyk mutation leads to congenital scoliosis-like vertebral malformations in zebrafish via dysregulated mTORC1/TFEB pathway[J]. Nat Commun, 2020, 11(1): 479.
[41] Zhang W, Yao Z, Guo R, et al. Molecular identification of T-box transcription factor 6 and prognostic assessment in patients with congenital scoliosis: a single-center study[J]. Front Med (Lausanne), 2022, 9: 941468.
[42] Javaheri B, Carriero A, Staines KA, et al. Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing[J]. Bone, 2015, 81: 277-291.

备注/Memo

备注/Memo:
基金项目:山西省留学人员科技活动择优资助项目(2020040)、山西 省回国留学人员科研资助项目(2022-197)
通信作者:赵斌 E-mail: zzbb2005@163.com
更新日期/Last Update: 2023-09-30