索引超出了数组界限。
[1] Ouellet J, Odent T. Animal models for scoliosis research: state of the
art, current concepts and future perspective applications[J]. Eur Spine
J, 2013, 22 (Suppl 2): S81-S95.
[2] Bobyn JD, Little DG, Gray R, et al. Animal models of scoliosis[J]. J
Orthop Res, 2015, 33(4): 458-467.
[3] Meiring AR, de Kater EP, Stadhouder A, et al. Current models to
understand the onset and progression of scoliotic deformities in
adolescent idiopathic scoliosis: a systematic review[J]. Spine Deform,
2023, 11(3): 545-558.
[4] Liang ZT, Guo CF, Li J, et al. The role of endocrine hormones in the
pathogenesis of adolescent idiopathic scoliosis[J]. FASEB J, 2021,
35(9): e21839.
[5] Yang S, Zheng C, Jiang J, et al. The value of applying a melatonin
antagonist (Luzindole) in improving the success rate of the bipedal
rat scoliosis model[J]. BMC Musculoskelet Disord, 2017, 18(1): 137.
[6] Man GC, Wang WW, Yim AP, et al. A review of pinealectomyinduced
melatonin-deficient animal models for the study of
etiopathogenesis of adolescent idiopathic scoliosis[J]. Int J Mol Sci,
2014, 15(9): 16484-16499.
[7] Kulis A, Go?dzialska A, Dr?g J, et al. Participation of sex hormones
in multifactorial pathogenesis of adolescent idiopathic scoliosis[J].
Int Orthop, 2015, 39(6): 1227-1236.
[8] Peng Y, Wang SR, Qiu GX, et al. Research progress on the etiology
and pathogenesis of adolescent idiopathic scoliosis[J]. Chin Med J
(Engl), 2020, 133(4): 483-493.
[9] Wise CA, Sepich D, Ushiki A, et al. The cartilage matrisome in
adolescent idiopathic scoliosis[J]. Bone Res, 2020, 8: 13.
[10] Xie H, Li M, Kang Y, et al. Zebrafish: an important model for
understanding scoliosis[J]. Cell Mol Life Sci, 2022, 79(9): 506.
[11] Skuplik I, Cobb J. Animal models for understanding human skeletal
defects[J]. Adv Exp Med Biol, 2020, 1236: 157-188.
[12] 沈晓龙, 周许辉, 刘洋, 等. A 型肉毒毒素一侧椎旁肌注射建立双
足直立鼠脊柱侧凸模型的初步研究[J]. 中国脊柱脊髓杂志, 2012,
22(9): 824-828.
[13] Wang BY, Hsiao AW, Wong N, et al. Is dexamethasone-induced
muscle atrophy an alternative model for naturally aged sarcopenia
model?[J]. J Orthop Translat, 2022, 39: 12-20.
[14] Peng H, Jin F, Meng D, et al. Exploring the pathological role of
collagen in paravertebral muscle in the progression of idiopathic
scoliosis[J]. Biomed Res Int, 2020, 2020: 1527403.
[15] Venzin OF, Oates AC. What are you synching about? Emerging
complexity of Notch signaling in the segmentation clock[J]. Dev
Biol, 2020, 460(1): 40-54.
[16] Sparrow DB, Chapman G, Smith AJ, et al. A mechanism for geneenvironment
interaction in the etiology of congenital scoliosis[J].
Cell, 2012, 149(2): 295-306.
[17] Liu L, Zhu Y, Han X, et al. The creation of scoliosis by scapulato-
contralateral ilium tethering procedure in bipedal rats: a
kyphoscoliosis model[J]. Spine (Phila Pa 1976), 2011, 36(17): 1340-
1349.
[18] Zhang Y, Shi Z, Li W, et al. A porcine model of early-onset scoliosis
combined with thoracic insufficiency syndrome: construction and
transcriptome analysis[J]. Gene, 2023, 858: 147202.
[19] Newton PO. Spinal growth tethering: indications and limits[J]. Ann
Transl Med, 2020, 8(2): 27.
[20] Latalski M, Szponder T, Starobrat G, et al. Reactivation of vertebral
growth plate function in vertebral body tethering in an animal
model[J]. Int J Mol Sci, 2022, 23(19): 11596.
[21] Domenech J, Barrios C, Tormos JM, et al. Somatosensory
cortectomy induces motor cortical hyperexcitability and scoliosis: an
experimental study in developing rats[J]. Spine J, 2013, 13(8): 938-
946.
[22] Gordy C, Straka H. Vestibular influence on vertebrate skeletal symmetry and body shape[J]. Front Syst Neurosci, 2021, 15: 753207.
[23] Liebsch C, Wilke HJ. How does the rib cage affect the biomechanical
properties of the thoracic spine? A systematic literature review[J].
Front Bioeng Biotechnol, 2022, 10: 904539.
[24] Cervera-Irimia J, González-Miranda ?, Riquelme-García ?, et al.
Scoliosis induced by costotransversectomy in minipigs model[J].
Med Glas (Zenica), 2019, 16(2): 184-190.
[25] Wen J, Wang D, Fang K, et al. Effect of neurocentral cartilage
destruction on spinal growth in immature rabbits[J]. J Int Med Res,
2019, 47(2): 951-961.
[26] 赵检. 成人脊柱畸形术后近端交界性后凸的影响因素分析及刚度
渐变结构对其预防的生物力学机制研究[D]. 上海:中国人民解
放军海军军医大学, 2020.
[27] Claussnitzer M, Cho JH, Collins R, et al. A brief history of human
disease genetics[J]. Nature, 2020, 577(7789): 179-189.
[28] Liu Z, Ramachandran J, Vokes SA, et al. Regulation of terminal
hypertrophic chondrocyte differentiation in Prmt5 mutant mice
modeling infantile idiopathic scoliosis[J]. Dis Model Mech, 2019,
12(12): dmm041251.
[29] Ulici V, Kelley KL, Longobardi L, et al. Impaired annulus fibrosus
development and vertebral fusion cause severe scoliosis in mice with
deficiency of c-Jun NH2-terminal kinases 1 and 2[J]. Am J Pathol,
2019, 189(4): 868-885.
[30] Kodama K, Takahashi H, Oiji N, et al. CANT1 deficiency in a mouse
model of Desbuquois dysplasia impairs glycosaminoglycan synthesis
and chondrocyte differentiation in growth plate cartilage[J]. FEBS
Open Bio, 2020, 10(6): 1096-1103.
[31] Wu Z, Dai Z, Yuwen W, et al. Genetic variants of CHD7 are
associated with adolescent idiopathic scoliosis[J]. Spine (Phila Pa
1976), 2021, 46(11): E618-E624.
[32] Ishiwata S, Iizuka H, Sonoda H, et al. Upregulated miR-224-
5p suppresses osteoblast differentiation by increasing the
expression of Pai-1 in the lumbar spine of a rat model of congenital
kyphoscoliosis[J]. Mol Cell Biochem, 2020, 475(1-2): 53-62.
[33] Liu Y, Pan A, Hai Y, et al. A symmetric biomechanical characteristics
of the paravertebral muscle in adolescent idiopathic scoliosis[J]. Clin
Biomech (Bristol, Avon), 2019, 65: 81-86.
[34] Lleras-Forero L, Newham E, Teufel S, et al. Muscle defects due to
perturbed somite segmentation contribute to late adult scoliosis[J].
Aging (Albany NY), 2020, 12(18): 18603-18621.
[35] Agarwal M, Sharma A, Kumar P, et al. Myosin heavy chainembryonic
regulates skeletal muscle differentiation during
mammalian development[J]. Development, 2020, 147(7): dev184507.
[36] Asahina M, Fujinawa R, Nakamura S, et al. Ngly1 -/- rats develop
neurodegenerative phenotypes and pathological abnormalities in their
peripheral and central nervous systems[J]. Hum Mol Genet, 2020,
29(10): 1635-1647.
[37] Assaraf E, Blecher R, Heinemann-Yerushalmi L, et al. Piezo2
expressed in proprioceptive neurons is essential for skeletal
integrity[J]. Nat Commun, 2020, 11(1): 3168.
[38] Harfe BD. Intervertebral disc repair and regeneration: insights from
the notochord[J]. Semin Cell Dev Biol, 2022, 127: 3-9.
[39] Bagwell J, Norman J, Ellis K, et al. Notochord vacuoles absorb
compressive bone growth during zebrafish spine formation[J]. Elife,
2020, 9: e51221.
[40] Sun X, Zhou Y, Zhang R, et al. Dstyk mutation leads to congenital
scoliosis-like vertebral malformations in zebrafish via dysregulated
mTORC1/TFEB pathway[J]. Nat Commun, 2020, 11(1): 479.
[41] Zhang W, Yao Z, Guo R, et al. Molecular identification of T-box
transcription factor 6 and prognostic assessment in patients with
congenital scoliosis: a single-center study[J]. Front Med (Lausanne),
2022, 9: 941468.
[42] Javaheri B, Carriero A, Staines KA, et al. Phospho1 deficiency
transiently modifies bone architecture yet produces consistent
modification in osteocyte differentiation and vascular porosity with
ageing[J]. Bone, 2015, 81: 277-291.