索引超出了数组界限。
[1] Barańska A, Religioni U, K?ak A, et al. Coping strategies preferred
by patients treated for osteoporosis and analysis of the difficulties
resulting from the disease[J]. Int J Environ Res Public Health, 2022,
19(9): 5677.
[2] ?ellár R, Dorko E, Rimárová K, et al. Long-term compliance
of patients with osteoporosis treatment and its effect to fracture
occurrence[J]. Cent Eur J Public Health, 2022, 30(Supplement):
S22-S26.
[3] Coughlan T, Dockery F. Osteoporosis and fracture risk in older
people[J]. Clin Med (Lond), 2014, 14(2): 187-191.
[4] Testa EJ, Callanan TC, Evans AR, et al. Osteoporosis and fragility
fractures[J]. R I Med J (2013), 2022, 105(8): 15-21.
[5] Fang SY, Dai JL, Min JK, et al. Analysis of risk factors related to the
re-fracture of adjacent vertebral body after PKP[J]. Eur J Med Res,
2021, 26(1): 127.
[6] Mao W, Dong F, Huang G, et al. Risk factors for secondary fractures
to percutaneous vertebroplasty for osteoporotic vertebral compression
fractures: a systematic review[J]. J Orthop Surg Res, 2021, 16(1):
644.
[7] Dai C, Liang G, Zhang Y, et al. Risk factors of vertebral re-fracture
after PVP or PKP for osteoporotic vertebral compression fractures,
especially in Eastern Asia: a systematic review and meta-analysis[J].
J Orthop Surg Res, 2022, 17(1): 161.
[8] Prost S, Pesenti S, Fuentes S, et al. Treatment of osteoporotic
vertebral fractures[J]. Orthop Traumatol Surg Res, 2021, 107(1S):
102779.
[9] Long Y, Yi W, Yang D. Advances in vertebral augmentation systems
for osteoporotic vertebral compression fractures[J]. Pain Res Manag,
2020, 2020: 3947368.
[10] Cheng Y, Cheng X, Wu H. Risk factors of new vertebral compression
fracture after percutaneous vertebroplasty or percutaneous
kyphoplasty[J]. Front Endocrinol (Lausanne), 2022, 13: 964578.
[11] 余俊喜, 吴少坚, 刘燕群, 等. 骨水泥分布状况与骨质疏松性椎体
压缩骨折术后再发邻近骨折的关系[J]. 中国临床医生杂志, 2020,
48(4): 466-468.
[12] An Z, Chen C, Wang J, et al. Logistic regression analysis on risk
factors of augmented vertebra recompression after percutaneous
vertebral augmentation[J]. J Orthop Surg Res, 2021, 16(1): 374.
[13] Tao W, Biao W, Xingmei C, et al. Predictive factors for adjacent
vertebral fractures after percutaneous kyphoplasty in patients with
osteoporotic vertebral compression fracture[J]. Pain Physician, 2022,
25(5): E725-E732.
[14] Liu J, Tang J, Liu H, et al. A novel and convenient method to
evaluate bone cement distribution following percutaneous vertebral
augmentation[J]. Sci Rep, 2020, 10(1): 16320.
[15] Li Q, Long X, Wang Y, et al. Clinical observation of two bone cement
distribution modes after percutaneous vertebroplasty for osteoporotic
vertebral compression fractures[J]. BMC Musculoskelet Disord,
2021, 22(1): 577.
[16] Pan Z, Zhou Q, Yang M, et al. Effects of distribution of bone cement
on clinical efficacy and secondary fracture after percutaneous
kyphoplasty for osteoporotic vertebral compression fractures[J]. Front
Surg, 2023, 9: 1054995.
[17] Wang Q, Dong JF, Fang X, et al. Application and modification of
bone cement in vertebroplasty: a literature review[J]. Jt Dis Relat
Surg, 2022, 33(2): 467-478.
[18] Lieberman IH, Togawa D, Kayanja MM. Vertebroplasty and
kyphoplasty: filler materials[J]. Spine J, 2005, 5(6 Suppl): 305S-316S.
[19] Lai PL, Chen LH, Chen WJ, et al. Chemical and physical properties
of bone cement for vertebroplasty[J]. Biomed J, 2013, 36(4): 162-
167.
[20] 陈建常, 马在松, 陈文红, 等. 骨水泥分布形态对骨质疏松性椎体
压缩性骨折手术效果影响[J]. 解放军医药杂志, 2015, 27(5): 82-
85.
[21] Zhou C, Liao Y, Huang S, et al. Effect of cement distribution type on
clinical outcome after percutaneous vertebroplasty for osteoporotic
vertebral compression fractures in the aging population[J]. Front
Surg, 2022, 9: 975832.
[22] 王雪峰, 刘辉, 丁少成. 骨水泥分布模式对骨质疏松性椎体压缩
骨折术后临床治疗效果[J]. 中国骨与关节杂志, 2019, 8(11): 836-
841.
[23] Lin J, Qian L, Jiang C, et al. Bone cement distribution is a potential
predictor to the reconstructive effects of unilateral percutaneous
kyphoplasty in OVCFs: a retrospective study[J]. J Orthop Surg Res,
2018, 13(1): 140.
[24] Ding X, Zhang Q, Zhao Y, et al. Location and effect of bone cement
in percutaneous vertebroplasty for osteoporotic vertebral compression
fractures[J]. Biomed Res Int, 2022, 2022: 6127620.
[25] He S, Zhang Y, Lv N, et al. The effect of bone cement distribution
on clinical efficacy after percutaneous kyphoplasty for osteoporotic
vertebral compression fractures[J]. Medicine (Baltimore), 2019,
98(50): e18217.
[26] Zhang Y, Chen X, Ji J, et al. Comparison of unilateral and bilateral
percutaneous kyphoplasty for bone cement distribution and clinical
efficacy: an analysis using three-dimensional computed tomography
images[J]. Pain Physician, 2022, 25(6): E805-E813.
[27] Song Q, Zhao Y, Li D, et al. Effect of different bone cement
distributions in percutaneous kyphoplasty on clinical outcomes for
osteoporotic vertebral compression fractures: a retrospective study[J].
Medicine (Baltimore), 2023, 102(12): e33309.
[28] 赵研, 宋启春, 李东, 等. 骨质疏松性椎体压缩骨折不同骨水泥分
布的临床观察及生物力学的有限元分析[J]. 创伤外科杂志, 2022,
24(11): 818-824.
[29] Zhang L, Wang Q, Wang L, et al. Bone cement distribution in the vertebral body affects chances of recompression after percutaneous
vertebroplasty treatment in elderly patients with osteoporotic
vertebral compression fractures[J]. Clin Interv Aging, 2017, 12: 431-
436.
[30] Tan L, Wen B, Guo Z, et al. The effect of bone cement distribution on
the outcome of percutaneous vertebroplasty: a case cohort study[J].
BMC Musculoskelet Disord, 2020, 21(1): 541.
[31] 林上进, 林伟龙, 潘依潇, 等. 经皮椎体成形术骨水泥与终板关系
对术后椎体高度丢失的影响[J]. 复旦学报( 医学版), 2018, 45(2):
199-205.
[32] Sun YC, Teng MM, Yuan WS, et al. Risk of post-vertebroplasty
fracture in adjacent vertebral bodies appears correlated with the
morphologic extent of bone cement[J]. J Chin Med Assoc, 2011,
74(8): 357-362.
[33] Lv B, Ji P, Fan X, et al. Clinical efficacy of different bone cement
distribution patterns in percutaneous kyphoplasty: a retrospective
study[J]. Pain Physician, 2020, 23(4): E409-E416.
[34] 张保健, 周红星. 骨水泥弥散对经皮椎体成形术治疗骨质疏松性
椎体压缩骨折疗效的影响[J]. 临床骨科杂志, 2022, 25(1): 20-24.