索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]刘斌,鲜艳思,郭保生,等.骨关节炎中滑膜炎症致病因素的研究进展[J].国际骨科学杂志,2023,05:274-278.
点击复制

骨关节炎中滑膜炎症致病因素的研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2023年05期
页码:
274-278
栏目:
综述
出版日期:
2023-09-30

文章信息/Info

Title:
-
作者:
刘斌鲜艳思郭保生蒋青
南京大学医学院附属鼓楼医院骨科、运动医学与成人重建外科、国家骨科与运动康复临床医学研究中心分中心
Author(s):
-
关键词:
骨关节炎滑膜炎症成纤维细胞巨噬细胞
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn. 1673-7083.2023.05.002
文献标识码:
-
摘要:
骨关节炎(OA)是以关节疼痛、肿胀、活动障碍为特征的退行性骨科疾病。除软骨磨损外,滑膜炎症在 OA 病理改变中的作用同样值得关注,其与疼痛症状密切相关,并具有判断预后的价值。关节内外多种因素均可导致 滑膜炎症的产生,OA 发生时关节内多种结构炎症因子产生增多,与软骨退变后释放的磨损颗粒、含钙晶体、细胞外 囊泡等共同构成关节腔的炎症微环境,可上调滑膜中成纤维细胞和巨噬细胞的炎症基因表达。此外,滑膜受力异常、 滑膜中衰老细胞增多也可参与滑膜炎症的发生,而肥胖、糖尿病引起的全身代谢紊乱则可通过激活炎症通路、影响 胰岛素敏感性等加剧滑膜炎症。该文就OA 中滑膜炎症致病因素的研究进展进行综述。
Abstract:
-

参考文献/References

[1] Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review[J]. JAMA, 2021, 325(6): 568-578.
[2] Hamada D, Maynard R, Schott E, et al. Suppressive effects of insulin on tumor necrosis factor-dependent early osteoarthritic changes associated with obesity and type 2 diabetes mellitus[J]. Arthritis Rheumatol, 2016 , 68(6): 1392-1402.
[3] Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk[J]. Nat Rev Rheumatol, 2016, 12(11): 632-644.
[4] Hügle T, Geurts J. What drives osteoarthritis?-synovial versus subchondral bone pathology[J]. Rheumatology (Oxford), 2017, 56(9): 1461-1471.
[5] Roemer FW, Guermazi A, Felson DT, et al. Presence of MRIdetected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study[J]. Ann Rheum Dis, 2011, 70(10): 1804-1809.
[6] Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications[J]. Arthritis Res Ther, 2017, 19(1): 18.
[7] Wang X, Blizzard L, Halliday A, et al. Association between MRIdetected knee joint regional effusion-synovitis and structural changes in older adults: a cohort study[J]. Ann Rheum Dis, 2016, 75(3): 519- 525.
[8] Neogi T, Guermazi A, Roemer F, et al. Association of joint inflammation with pain sensitization in knee osteoarthritis: the multicenter osteoarthritis study[J]. Arthritis Rheumatol, 2016, 68(3): 654-661.
[9] van den Bosch MHJ, van Lent PLEM, van der Kraan PM. Identifying effector molecules, cells, and cytokines of innate immunity in OA[J]. Osteoarthritis Cartilage, 2020, 28(5): 532-543.
[10] Rahmati M, Mobasheri A, Mozafari M. Inflammatory mediators in osteoarthritis: a critical review of the state-of-the-art, current prospects, and future challenges[J]. Bone, 2016, 85: 81-90.
[11] Pham TM, Erichsen JL, Kowal JM, et al. Elevation of proinflammatory cytokine levels following intra-articular fractures: a systematic review[J]. Cells, 2021, 10(4): 902.
[12] Chwastek J, K?dziora M, Borczyk M, et al. Inflammation-driven secretion potential is upregulated in osteoarthritic fibroblast-like synoviocytes[J]. Int J Mol Sci, 2022, 23(19): 11817.
[13] Domenis R, Zanutel R, Caponnetto F, et al. Characterization of the proinflammatory profile of synovial fluid-derived exosomes of patients with osteoarthritis[J]. Mediators Inflamm, 2017, 2017: 4814987.
[14] Estell EG, Murphy LA, Gangi LR, et al. Attachment of cartilage wear particles to the synovium negatively impacts friction properties[J]. J Biomech, 2021, 127: 110668.
[15] Wang T, He C. Pro-inflammatory cytokines: the link between obesity and osteoarthritis[J]. Cytokine Growth Factor Rev, 2018, 44: 38-50.
[16] Estell EG, Silverstein AM, Stefani RM, et al. Cartilage wear particles induce an inflammatory response similar to cytokines in human fibroblast-like synoviocytes[J]. J Orthop Res, 2019, 37(9): 1979- 1987.
[17] Silverstein AM, Stefani RM, Sobczak E, et al. Toward understanding the role of cartilage particulates in synovial inflammation[J]. Osteoarthritis Cartilage, 2017, 25(8): 1353-1361.
[18] Shanley LC, Mahon OR, O'Rourke SA, et al. Macrophage metabolic profile is altered by hydroxyapatite particle size[J]. Acta Biomater, 2023,160: 311-321.
[19] Nguyen C, Bazin D, Daudon M, et al. Revisiting spatial distribution and biochemical composition of calcium-containing crystals in human osteoarthritic articular cartilage[J]. Arthritis Res Ther, 2013, 15(5): R103.
[20] Bernabei I, So A, Busso N, et al. Cartilage calcification in osteoarthritis: mechanisms and clinical relevance[J]. Nat Rev Rheumatol, 2023, 19(1): 10-27.
[21] Mahon OR, Kelly DJ, McCarthy GM, et al. Osteoarthritis-associated basic calcium phosphate crystals alter immune cell metabolism and promote M1 macrophage polarization[J]. Osteoarthritis Cartilage, 2020, 28(5): 603-612.
[22] Liu Y, Xu R, Gu H, et al. Metabolic reprogramming in macrophage responses[J]. Biomark Res, 2021, 9(1): 1
[23] van Niel G, Carter DRF, Clayton A, et al. Challenges and directions in studying cell-cell communication by extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2022, 23(5): 369-382.
[24] Wu Y, Li J, Zeng Y, et al. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies[J]. Int J Oral Sci, 2022, 14(1): 40.
[25] Varela-Eirín M, Carpintero-Fernández P, Guitián-Caama?o A, et al. Extracellular vesicles enriched in connexin 43 promote a senescent phenotype in bone and synovial cells contributing to osteoarthritis progression[J]. Cell Death Dis, 2022, 13(8): 681.
[26] Ni Z, Kuang L, Chen H, et al. The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis[J]. Cell Death Dis, 2019, 10(7): 522.
[27] Del Rey MJ, Valín ?, Usategui A, et al. Senescent synovial fibroblasts accumulate prematurely in rheumatoid arthritis tissues and display an enhanced inflammatory phenotype[J]. Immun Ageing, 2019, 16: 29.
[28] Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis[J]. Nat Rev Rheumatol, 2021, 17(1): 47-57.
[29] Chen X, Gong W, Shao X, et al. METTL3-mediated m6A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression[J]. Ann Rheum Dis, 2022, 81(1): 87-99.
[30] Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment[J]. Nat Med, 2017, 23(6): 775-781.
[31] Faust HJ, Zhang H, Han J, et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis[J]. J Clin Invest, 2020, 130(10): 5493-5507.
[32] Zhang Y, Zhou S, Cai W, et al. Hypoxia/reoxygenation activates the JNK pathway and accelerates synovial senescence[J]. Mol Med Rep, 2020, 22(1): 265-276.
[33] Chen X, Zhang L, Shao X, et al. Specific clearance of senescent synoviocytes suppresses the development of osteoarthritis based on aptamer-functionalized targeted drug delivery system[J]. Adv Funct Mater, 2022, 32(17): 2109460.
[34] Zhang H, Shao Y, Yao Z, et al. Mechanical overloading promotes chondrocyte senescence and osteoarthritis development through downregulating FBXW7[J]. Ann Rheum Dis, 2022, 81(5): 676-686.
[35] Philpott HT, Birmingham TB, Fiset B, et al. Tensile strain and altered synovial tissue metabolism in human knee osteoarthritis[J]. Sci Rep, 2022, 12(1): 17367.
[36] Nazet U, Schr?der A, Gr?ssel S, et al. Housekeeping gene validation for RT-qPCR studies on synovial fibroblasts derived from healthy and osteoarthritic patients with focus on mechanical loading[J]. PLoS One, 2019, 14(12): e0225790.
[37] Fahy N, Menzel U, Alini M, et al. Shear and dynamic compression modulates the inflammatory phenotype of human monocytes in vitro[J]. Front Immunol, 2019, 10: 383.
[38] Schr?der A, Nazet U, Muschter D, et al. Impact of mechanical load on the expression profile of synovial fibroblasts from patients with and without osteoarthritis[J]. Int J Mol Sci, 2019, 20(3): 585.
[39] Reyes C, Leyland KM, Peat G, et al. Association between overweight and obesity and risk of clinically diagnosed knee, hip, and hand osteoarthritis: a population-based cohort study[J]. Arthritis Rheumatol, 2016, 68(8): 1869-1875.
[40] Berenbaum F, Wallace IJ, Lieberman DE, et al. Modern-day environmental factors in the pathogenesis of osteoarthritis[J]. Nat Rev Rheumatol, 2018, 14(11): 674-681.
[41] Duan L, Ma Y, Wang Y, et al. Infrapatellar fat pads participate in the development of knee osteoarthritis in obese patients via the activation of the NF κB signaling pathway[J]. Int J Mol Med, 2020, 46(6): 2260-2270.
[42] Harasymowicz NS, Clement ND, Azfer A, et al. Regional differences between perisynovial and infrapatellar adipose tissue depots and their response to class Ⅱ and class Ⅲ obesity in patients with osteoarthritis[J]. Arthritis Rheumatol, 2017, 69(7): 1396-1406.
[43] Larra?aga-Vera A, Lamuedra A, Pérez-Baos S, et al. Increased synovial lipodystrophy induced by high fat diet aggravates synovitis in experimental osteoarthritis[J]. Arthritis Res Ther, 2017, 19(1): 264.
[44] Sun AR, Panchal SK, Friis T, Sekar S, et al. Obesity-associated metabolic syndrome spontaneously induces infiltration of proinflammatory macrophage in synovium and promotes osteoarthritis[J]. PLoS One, 2017, 12(8): e0183693.
[45] Daugaard CL, Henriksen M, Riis RGC, et al. The impact of a significant weight loss on inflammation assessed on DCE-MRI and static MRI in knee osteoarthritis: a prospective cohort study[J]. Osteoarthritis Cartilage, 2020, 28(6): 766-773.
[46] Sanchez-Lopez E, Coras R, Torres A, et al. Synovial inflammation in osteoarthritis progression[J]. Nat Rev Rheumatol, 2022, 18(5): 258- 275.
[47] Schett G, Kleyer A, Perricone C, et al. Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study[J]. Diabetes Care, 2013, 36(2): 403-409.
[48] Piva SR, Susko AM, Khoja SS, et al. Links between osteoarthritis and diabetes: implications for management from a physical activity perspective[J]. Clin Geriatr Med, 2015, 31(1): 67-87.
[49] Li Q, Wen Y, Wang L, et al. Hyperglycemia-induced accumulation of advanced glycosylation end products in fibroblast-like synoviocytes promotes knee osteoarthritis[J]. Exp Mol Med, 2021, 53(11): 1735- 1747.
[50] Chen YJ, Chan DC, Chiang CK, et al. Advanced glycation endproducts induced VEGF production and inflammatory responses in human synoviocytes via RAGE-NF-κB pathway activation[J]. J Orthop Res, 2016, 34(5): 791-800.
[51] Tsai CH, Chiang YC, Chen HT, et al. High glucose induces vascular endothelial growth factor production in human synovial fibroblasts through reactive oxygen species generation[J]. Biochim Biophys Acta, 2013, 1830(3): 2649-2658.
[52] Sakhrani N, Lee AJ, Murphy LA, et al. Toward development of a diabetic synovium culture model[J]. Front Bioeng Biotechnol, 2022, 10: 825046.
[53] Griffin TM, Huffman KM. Editorial: insulin resistance: releasing the brakes on synovial inflammation and osteoarthritis?[J]. Arthritis Rheumatol, 2016, 68(6): 1330-1333.
[54] Tchetina EV, Markova GA, Sharapova EP. Insulin resistance in osteoarthritis: similar mechanisms to type 2 diabetes mellitus[J]. J Nutr Metab, 2020, 2020: 4143802.

备注/Memo

备注/Memo:
基金项目:国家重点研发计划(2021YFA1201404)、国家自然科学基 金(81991514)、江苏省研究生科研创新计划(KYCX23_0190)
通信作者:蒋青 E-mail: qingj@nju.edu.cn
更新日期/Last Update: 2023-09-30