索引超出了数组界限。
[1] Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration:
current concepts and future directions[J]. BMC Med, 2011, 9: 66.
[2] Bahney CS, Zondervan RL, Allison P, et al. Cellular biology of
fracture healing[J]. J Orthop Res, 2019, 37(1): 35-50.
[3] Epelman S,Lavine KJ,Randolph GJ. Origin and functions of
tissue macrophages[J]. Immunity, 2014, 41(1): 21-35.
[4] Schulz C,Gomez Perdiguero E,Chorro L, et al. A lineage of
myeloid cells independent of Myb and hematopoietic stem cells[J].
Science, 2012, 336(6077): 86-90.
[5] Hoeffel G,Ginhoux F. Fetal monocytes and the origins of tissueresident
macrophages[J]. Cell Immunol, 2018, 330: 5-15.
[6] Davies LC,Jenkins SJ,Allen JE, et al. Tissue-resident
macrophages[J]. Nat Immunol, 2013, 14(10): 986-995.
[7] Wynn TA,Chawla A,Pollard JW. Macrophage biology in
development, homeostasis and disease[J]. Nature, 2013, 496(7446):
445-455.
[8] Pajarinen J,Lin T,Gibon E, et al. Mesenchymal stem cellmacrophage
crosstalk and bone healing[J]. Biomaterials, 2019, 196:
80-89.
[9] Zhang Q,Hwang JW,Oh JH, et al. Effects of the fibrous
topography-mediated macrophage phenotype transition on the
recruitment of mesenchymal stem cells: an in vivo study[J].
Biomaterials, 2017, 149: 77-87.
[10] Pegtel DM,Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88:
487-514.
[11] Kalluri R,LeBleu VS. The biology, function, and biomedical
applications of exosomes[J]. Science, 2020, 367(6478) : eaau6977.
[12] Zhang Y,Liu Y,Liu H, et al. Exosomes: biogenesis, biologic
function and clinical potential[J]. Cell Biosci, 2019, 9: 19.
[13] Shan S,Lin X,Li F, et al. Exosomes and bone disease[J]. Curr Pharm Des, 2019, 25(42): 4536-4549.
[14] Gao M,Gao W,Papadimitriou JM, et al. Exosomes: the enigmatic
regulators of bone homeostasis[J]. Bone Res, 2018, 6: 36.
[15] Shapouri-Moghaddam A,Mohammadian S,Vazini H, et al.
Macrophage plasticity, polarization, and function in health and
disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440.
[16] Mantovani A,Biswas SK,Galdiero MR, et al. Macrophage
plasticity and polarization in tissue repair and remodelling[J]. J
Pathol, 2013, 229(2): 176-185.
[17] Xiong Y,Chen L,Yan C, et al. M2 macrophagy-derived exosomal
miRNA-5106 induces bone mesenchymal stem cells towards
osteoblastic fate by targeting salt-inducible kinase 2 and 3[J]. J
Nanobiotechnology, 2020, 18(1): 66.
[18] Kang M,Huang C,Lu Y, et al. Bone regeneration is mediated by
macrophage extracellular vesicles[J]. Bone, 2020, 141: 115627.
[19] 张程,包丽荣,杨于桃, 等. M2 巨噬细胞外泌体对高糖高胰岛
素条件下小鼠骨髓间充质干细胞成骨分化的影响[J]. 四川大学学
报( 医学版), 2022, 53(1): 63-70.
[20] Li Z,Wang Y,Li S, et al. Exosomes derived from M2
macrophages facilitate osteogenesis and reduce adipogenesis of
BMSCs[J]. Front Endocrinol , 2021, 12: 680328.
[21] Wu T,Zhou X,Ye C, et al. M1 macrophage-derived exosomes
moderate the differentiation of bone marrow mesenchymal stem
cells[J]. Biocell, 2022, 46(2): 495-503.
[22] Xia Y,He X,Xu X, et al. Exosomes derived from M0, M1 and
M2 macrophages exert distinct influences on the proliferation and
differentiation of mesenchymal stem cells[J]. Peer J, 2020, 8: e8970.
[23] Henderson S,Ibe I,Cahill S, et al. Bone quality and fracturehealing
in type-1 and type-2 diabetes mellitus[J]. J Bone Joint Surg
Am, 2019, 101(15): 1399-1410.
[24] Zhang D,Wu Y,Li Z, et al. MiR-144-5p, an exosomal miRNA
from bone marrow-derived macrophage in type 2 diabetes, impairs
bone fracture healing via targeting Smad1[J]. J Nanobiotechnology,
2021, 19(1): 226.
[25] 史亚方,林莉. P.gingivalis 感染巨噬细胞释放的外泌体对小鼠成
骨细胞系MC3T3-E1 的作用[C]//2019 年中华口腔医学会牙周病
学专业委员会牙周病与植体周病新分类? 新理论? 新技术高峰论
坛. 沈阳, 2019: 139-141.
[26] Liu J,Zhao Y,Zhang Y, et al. Exosomes derived from macrophages
upon Zn ion stimulation promote osteoblast and endothelial cell
functions[J]. J Mater Chem B, 2021, 9(18): 3800-3807.
[27] Zhu Y,Zhao S,Cheng L, et al. Mg2+-mediated autophagydependent
polarization of macrophages mediates the osteogenesis
of bone marrow stromal stem cells by interfering with macrophagederived
exosomes containing miR-381[J]. J Orthop Res, 2022, 40(7):
1563-1576.
[28] Wei F,Li M,Crawford R, et al. Exosome-integrated titanium
oxide nanotubes for targeted bone regeneration[J]. Acta Biomaterialia,
2019, 86: 480-492.
[29] Bai X,Gao M,Syed S, et al. Bioactive hydrogels for bone
regeneration[J]. Bioact Mater, 2018, 3(4): 401-417.
[30] Sun Y,Zhang B,Zhai D, et al. Three-dimensional printing of
bioceramic-induced macrophage exosomes: immunomodulation and
osteogenesis/angiogenesis[J]. NPG Asia Mater, 2021, 13(1): 1-16.
[31] Vishnoi A,Rani S. miRNA biogenesis and regulation of diseases: an
overview[J]. Methods Mol Biol, 2017, 1509: 1-10.
[32] Dai Z, Jin Y, Zheng J, et al. miR-217 promotes cell proliferation and
osteogenic differentiation of BMSCs by targeting DKK1 in steroidassociated
osteonecrosis[J]. Biomed Pharmacother, 2019, 109: 1112-
1119.
[33] Li Z,Hu H,Zhang X, et al. MiR-291a-3p regulates the BMSCs
differentiation via targeting DKK1 in dexamethasone-induced
osteoporosis[J]. Kaohsiung J Med Sci, 2020, 36(1): 35-42.
[34] Xu T,Luo Y,Wang J, et al. Exosomal miRNA-128-3p from
mesenchymal stem cells of aged rats regulates osteogenesis and bone
fracture healing by targeting Smad5[J]. J Nanobiotechnology, 2020,
18(1): 47.
[35] Long H,Zhu Y,Lin Z, et al. miR-381 modulates human bone
mesenchymal stromal cells (BMSCs) osteogenesis via suppressing
Wnt signaling pathway during atrophic nonunion development[J].
Cell Death Dis, 2019, 10(7): 470.