索引超出了数组界限。
[1] Liebscher T, Niedeggen A, Estel B, et al. Airway complications in
traumatic lower cervical spinal cord injury: a retrospective study[J]. J
Spinal Cord Med, 2015, 38(5): 607-614.
[2] Kigerl KA, Hall JCE, Wang L, et al. Gut dysbiosis impairs recovery
after spinal cord injury[J]. J Exp Med, 2016, 213(12): 2603-2620.
[3] Finnerup NB. Neuropathic pain and spasticity: intricate consequences
of spinal cord injury[J]. Spinal Cord, 2017, 55(12): 1046-1050.
[4] Panicker JN, de Sèze M, Fowler CJ. Rehabilitation in practice:
neurogenic lower urinary tract dysfunction and its management[J].
Clin Rehabil, 2010, 24(7): 579-589.
[5] Chang FS, Zhang Q, Sun M, et al. Epidemiological study of spinal
cord injury individuals from halfway houses in Shanghai, China[J]. J
Spinal Cord Med, 2018, 41(4): 450-458.
[6] Li HL, Xu H, Li YL, et al. Epidemiology of traumatic spinal cord
injury in Tianjin, China: an 18-year retrospective study of 735cases[J]. J Spinal Cord Med, 2019, 42(6): 778-785.
[7] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA–
guided DNA endonuclease in adaptive bacterial immunity[J]. Science,
2012, 337(6096): 816-821.
[8] Nu?ez JK, Chen J, Pommier GC, et al. Genome-wide programmable
transcriptional memory by CRISPR-based epigenome editing[J]. Cell,
2021, 184(9): 2503-2519.e17.
[9] Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPRmediated
control of gene repression and activation[J]. Cell, 2014,
159(3): 647-661.
[10] Liu R, Peng Z, Zhang Y, et al. Upregulation of miR-128 inhibits
neuronal cell apoptosis following spinal cord injury via FasL
downregulation by repressing ULK1[J]. Mol Med Rep, 2021, 24(3):
667.
[11] Hassanzadeh S, Jameie SB, Soleimani M, et al. Coenzyme Q10
influences on the levels of TNF-α and IL-10 and the ratio of Bax/Bcl2
in a menopausal rat model following lumbar spinal cord injury[J]. J
Mol Neurosci, 2018, 65(2): 255-264.
[12] Rong Y, Ji C, Wang Z, et al. Small extracellular vesicles encapsulating
CCL2 from activated astrocytes induce microglial activation
and neuronal apoptosis after traumatic spinal cord injury[J].
Neuroinflammation, 2021, 18(1): 196.
[13] Pelisch N, Rosas Almanza J, Stehlik KE, et al. CCL3 contributes to
secondary damage after spinal cord injury[J]. J Neuroinflammation,
2020, 17: 362.
[14] Kong D, Feng B, Amponsah AE, et al. hiPSC-derived NSCs
effectively promote the functional recovery of acute spinal cord
injury in mice[J]. Stem Cell Res Ther, 2021, 12(1): 172.
[15] Fang M, Wang J, Huang JY, et al. The neuroprotective effects of Reg-
2 following spinal cord transection injury[J]. Anat Rec (Hoboken),
2011, 294(1): 24-45.
[16] Liu S, Xiao Z, Li X, et al. Vascular endothelial growth factor activates
neural stem cells through epidermal growth factor receptor signal
after spinal cord injury[J]. CNS Neurosci Ther, 2019, 25(3): 375-385.
[17] Gantner CW, de Luzy IR, Kauhausen JA, et al. Viral delivery of
GDNF promotes functional integration of human stem cell grafts in
Parkinson’s disease[J]. Cell Stem Cell, 2020, 26(4): 511-526.e5.
[18] Khazaei M, Ahuja CS, Nakashima H, et al. GDNF rescues the fate of
neural progenitor grafts by attenuating Notch signals in the injured
spinal cord in rodents[J]. Sci Transl Med, 2020, 12(525): eaau3538.
[19] Zhao YZ, Jiang X, Xiao J, et al. Using NGF heparin-poloxamer
thermosensitive hydrogels to enhance the nerve regeneration for
spinal cord injury[J]. Acta Biomater, 2016, 29: 71-80.
[20] Gu Y, Cao H, Li F, et al. Production of functional human nerve growth
factor from the submandibular glands of mice using a CRISPR/Cas9
genome editing system[J]. World J Microbiol Biotechnol, 2020,
36(12): 176.
[21] Li R, Shang J, Zhou W, et al. Overexpression of HIPK2 attenuates
spinal cord injury in rats by modulating apoptosis, oxidative stress,
and inflammation[J]. Biomed Pharmacother, 2018, 103: 127-134.
[22] Hsu MN, Liao HT, Truong VA, et al. CRISPR-based activation
of endogenous neurotrophic genes in adipose stem cell sheets to
stimulate peripheral nerve regeneration[J]. Theranostics, 2019, 9(21):
6099-6111.
[23] Yuan R, Fan Q, Liang X, et al. Cucurbitacin B inhibits TGF-β1-
induced epithelial–mesenchymal transition (EMT) in NSCLC through
regulating ROS and PI3K/Akt/mTOR pathways[J]. Chin Med, 2022,
17(1): 24.
[24] Klatt Shaw D, Saraswathy VM, Zhou L, et al. Localized EMT
reprograms glial progenitors to promote spinal cord repair[J]. Dev
Cell, 2021, 56(5): 613-626.e7.
[25] Moses C, Hodgetts SI, Nugent F, et al. Transcriptional repression of
PTEN in neural cells using CRISPR/dCas9 epigenetic editing[J]. Sci
Rep, 2020, 10(1): 11393.
[26] Hadtstein F, Vrolijk M. Vitamin B6-induced neuropathy: exploring
the mechanisms of pyridoxine toxicity[J]. Adv Nutr, 2021, 12(5):
1911-1929.
[27] Xiong LL, Qin YX, Xiao QX, et al. MicroRNA339 targeting PDXK
improves motor dysfunction and promotes neurite growth in the
remote cortex subjected to spinal cord transection[J]. Front Cell Dev
Biol, 2020, 8: 577.
[28] Lutz D, Loers G, Kleene R, et al. Myelin basic protein cleaves
cell adhesion molecule L1 and promotes neuritogenesis and cell
survival[J]. J Biol Chem, 2014, 289(19): 13503-13518.
[29] Yan Z, Chu L, Jia X, et al. Myelin basic protein enhances axonal
regeneration from neural progenitor cells[J]. Cell Biosci, 2021, 11(1):
80.
[30] Guo Q, Li S, Liang Y, et al. Effects of C3 deficiency on inflammation
and regeneration following spinal cord injury in mice[J]. Neurosci
Lett, 2010, 485(1): 32-36.
[31] East-Seletsky A, O’Connell MR, Knight SC, et al. Two distinct
RNase activities of CRISPR-C2c2 enable guide-RNA processing and
RNA detection[J]. Nature, 2016, 538(7624): 270-273.
[32] Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single
RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell,
2015, 163(3): 759-771.
[33] Harrington LB, Burstein D, Chen JS, et al. Programmed DNA
destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018,
362(6416): 839-842.
[34] Klatt Shaw D, Mokalled MH. Efficient CRISPR/Cas9 mutagenesis
for neurobehavioral screening in adult zebrafish[J]. G3 (Bethesda),
2021, 11(8): jkab089.
[35] Keatinge M, Tsarouchas TM, Munir T, et al. CRISPR gRNA
phenotypic screening in zebrafish reveals pro-regenerative genes in
spinal cord injury[J]. PLoS Genet, 2021, 17(4): e1009515.
[36] Fei JF, Schuez M, Tazaki A, et al. CRISPR-mediated genomic
deletion of Sox2 in the axolotl shows a requirement in spinal cord
neural stem cell amplification during tail regeneration[J]. Stem Cell
Reports, 2014, 3(3): 444-459.
[37] Tazaki A, Tanaka EM, Fei JF. Salamander spinal cord regeneration:
the ultimate positive control in vertebrate spinal cord regeneration[J].
Dev Biol, 2017, 432(1): 63-71.
[38] H?ijer I, Emmanouilidou A, ?stlund R, et al. CRISPR-Cas9 induces
large structural variants at on-target and off-target sites in vivo that
segregate across generations[J]. Nat Commun, 2022, 13(1): 627.
[39] Yin J, Lu R, Xin C, et al. Cas9 exo-endonuclease eliminates
chromosomal translocations during genome editing[J]. Nat Commun,
2022, 13(1): 1204.
[40] Bravo JPK, Liu MS, Hibshman GN, et al. Structural basis for
mismatch surveillance by CRISPR-Cas9[J]. Nature, 2022, 603(7900):
343-347.