索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]魏家宝,林俊卿,郑宪友,等.CRISPR/Cas技术在脊髓损伤修复研究中的应用[J].国际骨科学杂志,2022,06:367-370.
点击复制

CRISPR/Cas技术在脊髓损伤修复研究中的应用(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2022年06期
页码:
367-370
栏目:
综述
出版日期:
2022-12-01

文章信息/Info

Title:
-
文章编号:
10.3969/j.issn.1673-7083.2022.06.010
作者:
魏家宝;林俊卿;郑宪友;
200233, 上海交通大学医学院附属第六人民医院骨科
Author(s):
-
关键词:
脊髓损伤CRISPR/Cas 技术神经修复基因编辑
Keywords:
-
分类号:
-
DOI:
-
文献标识码:
-
摘要:
脊髓损伤是严重的神经系统疾病,能够引起患者神经功能障碍,临床上并无有效治疗方法,亟待开发更好 的治疗方案。CRISPR/Cas是一种高精度、高效率的基因编辑技术,研究表明CRISPR/Cas技术可以调控脊髓损伤相关基因、 细胞因子、蛋白酶的表达,使其可用于促进脊髓损伤修复。同时,利用CRISPR/Cas 技术的分子检测能力可发现更多 与脊髓损伤相关的基因,为脊髓损伤修复带来新突破。该文对CRISPR/Cas 技术应用于脊髓损伤修复的相关研究进展 进行综述。
Abstract:
-

参考文献/References

[1] Liebscher T, Niedeggen A, Estel B, et al. Airway complications in traumatic lower cervical spinal cord injury: a retrospective study[J]. J Spinal Cord Med, 2015, 38(5): 607-614.
[2] Kigerl KA, Hall JCE, Wang L, et al. Gut dysbiosis impairs recovery after spinal cord injury[J]. J Exp Med, 2016, 213(12): 2603-2620.
[3] Finnerup NB. Neuropathic pain and spasticity: intricate consequences of spinal cord injury[J]. Spinal Cord, 2017, 55(12): 1046-1050.
[4] Panicker JN, de Sèze M, Fowler CJ. Rehabilitation in practice: neurogenic lower urinary tract dysfunction and its management[J]. Clin Rehabil, 2010, 24(7): 579-589.
[5] Chang FS, Zhang Q, Sun M, et al. Epidemiological study of spinal cord injury individuals from halfway houses in Shanghai, China[J]. J Spinal Cord Med, 2018, 41(4): 450-458.
[6] Li HL, Xu H, Li YL, et al. Epidemiology of traumatic spinal cord injury in Tianjin, China: an 18-year retrospective study of 735cases[J]. J Spinal Cord Med, 2019, 42(6): 778-785.
[7] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA– guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
[8] Nu?ez JK, Chen J, Pommier GC, et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing[J]. Cell, 2021, 184(9): 2503-2519.e17.
[9] Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPRmediated control of gene repression and activation[J]. Cell, 2014, 159(3): 647-661.
[10] Liu R, Peng Z, Zhang Y, et al. Upregulation of miR-128 inhibits neuronal cell apoptosis following spinal cord injury via FasL downregulation by repressing ULK1[J]. Mol Med Rep, 2021, 24(3): 667.
[11] Hassanzadeh S, Jameie SB, Soleimani M, et al. Coenzyme Q10 influences on the levels of TNF-α and IL-10 and the ratio of Bax/Bcl2 in a menopausal rat model following lumbar spinal cord injury[J]. J Mol Neurosci, 2018, 65(2): 255-264.
[12] Rong Y, Ji C, Wang Z, et al. Small extracellular vesicles encapsulating CCL2 from activated astrocytes induce microglial activation and neuronal apoptosis after traumatic spinal cord injury[J]. Neuroinflammation, 2021, 18(1): 196.
[13] Pelisch N, Rosas Almanza J, Stehlik KE, et al. CCL3 contributes to secondary damage after spinal cord injury[J]. J Neuroinflammation, 2020, 17: 362.
[14] Kong D, Feng B, Amponsah AE, et al. hiPSC-derived NSCs effectively promote the functional recovery of acute spinal cord injury in mice[J]. Stem Cell Res Ther, 2021, 12(1): 172.
[15] Fang M, Wang J, Huang JY, et al. The neuroprotective effects of Reg- 2 following spinal cord transection injury[J]. Anat Rec (Hoboken), 2011, 294(1): 24-45.
[16] Liu S, Xiao Z, Li X, et al. Vascular endothelial growth factor activates neural stem cells through epidermal growth factor receptor signal after spinal cord injury[J]. CNS Neurosci Ther, 2019, 25(3): 375-385.
[17] Gantner CW, de Luzy IR, Kauhausen JA, et al. Viral delivery of GDNF promotes functional integration of human stem cell grafts in Parkinson’s disease[J]. Cell Stem Cell, 2020, 26(4): 511-526.e5.
[18] Khazaei M, Ahuja CS, Nakashima H, et al. GDNF rescues the fate of neural progenitor grafts by attenuating Notch signals in the injured spinal cord in rodents[J]. Sci Transl Med, 2020, 12(525): eaau3538.
[19] Zhao YZ, Jiang X, Xiao J, et al. Using NGF heparin-poloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury[J]. Acta Biomater, 2016, 29: 71-80.
[20] Gu Y, Cao H, Li F, et al. Production of functional human nerve growth factor from the submandibular glands of mice using a CRISPR/Cas9 genome editing system[J]. World J Microbiol Biotechnol, 2020, 36(12): 176.
[21] Li R, Shang J, Zhou W, et al. Overexpression of HIPK2 attenuates spinal cord injury in rats by modulating apoptosis, oxidative stress, and inflammation[J]. Biomed Pharmacother, 2018, 103: 127-134.
[22] Hsu MN, Liao HT, Truong VA, et al. CRISPR-based activation of endogenous neurotrophic genes in adipose stem cell sheets to stimulate peripheral nerve regeneration[J]. Theranostics, 2019, 9(21): 6099-6111.
[23] Yuan R, Fan Q, Liang X, et al. Cucurbitacin B inhibits TGF-β1- induced epithelial–mesenchymal transition (EMT) in NSCLC through regulating ROS and PI3K/Akt/mTOR pathways[J]. Chin Med, 2022, 17(1): 24.
[24] Klatt Shaw D, Saraswathy VM, Zhou L, et al. Localized EMT reprograms glial progenitors to promote spinal cord repair[J]. Dev Cell, 2021, 56(5): 613-626.e7.
[25] Moses C, Hodgetts SI, Nugent F, et al. Transcriptional repression of PTEN in neural cells using CRISPR/dCas9 epigenetic editing[J]. Sci Rep, 2020, 10(1): 11393.
[26] Hadtstein F, Vrolijk M. Vitamin B6-induced neuropathy: exploring the mechanisms of pyridoxine toxicity[J]. Adv Nutr, 2021, 12(5): 1911-1929.
[27] Xiong LL, Qin YX, Xiao QX, et al. MicroRNA339 targeting PDXK improves motor dysfunction and promotes neurite growth in the remote cortex subjected to spinal cord transection[J]. Front Cell Dev Biol, 2020, 8: 577.
[28] Lutz D, Loers G, Kleene R, et al. Myelin basic protein cleaves cell adhesion molecule L1 and promotes neuritogenesis and cell survival[J]. J Biol Chem, 2014, 289(19): 13503-13518.
[29] Yan Z, Chu L, Jia X, et al. Myelin basic protein enhances axonal regeneration from neural progenitor cells[J]. Cell Biosci, 2021, 11(1): 80.
[30] Guo Q, Li S, Liang Y, et al. Effects of C3 deficiency on inflammation and regeneration following spinal cord injury in mice[J]. Neurosci Lett, 2010, 485(1): 32-36.
[31] East-Seletsky A, O’Connell MR, Knight SC, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624): 270-273.
[32] Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771.
[33] Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416): 839-842.
[34] Klatt Shaw D, Mokalled MH. Efficient CRISPR/Cas9 mutagenesis for neurobehavioral screening in adult zebrafish[J]. G3 (Bethesda), 2021, 11(8): jkab089.
[35] Keatinge M, Tsarouchas TM, Munir T, et al. CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury[J]. PLoS Genet, 2021, 17(4): e1009515.
[36] Fei JF, Schuez M, Tazaki A, et al. CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration[J]. Stem Cell Reports, 2014, 3(3): 444-459.
[37] Tazaki A, Tanaka EM, Fei JF. Salamander spinal cord regeneration: the ultimate positive control in vertebrate spinal cord regeneration[J]. Dev Biol, 2017, 432(1): 63-71.
[38] H?ijer I, Emmanouilidou A, ?stlund R, et al. CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations[J]. Nat Commun, 2022, 13(1): 627.
[39] Yin J, Lu R, Xin C, et al. Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing[J]. Nat Commun, 2022, 13(1): 1204.
[40] Bravo JPK, Liu MS, Hibshman GN, et al. Structural basis for mismatch surveillance by CRISPR-Cas9[J]. Nature, 2022, 603(7900): 343-347.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金(82172421、81974331)
通信作者: 郑宪友 E-mail: zhengxianyou@126.com
更新日期/Last Update: 2022-12-01