索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]韩博,蔡闯,崔学文,等.外泌体联合可注射生物材料治疗脊髓损伤[J].国际骨科学杂志,2022,06:362-366.
点击复制

外泌体联合可注射生物材料治疗脊髓损伤(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2022年06期
页码:
362-366
栏目:
综述
出版日期:
2022-12-01

文章信息/Info

Title:
-
文章编号:
10.3969/j.issn.1673-7083.2022.06.009
作者:
韩博;蔡闯;崔学文;
212001 江苏镇江, 江苏大学附属医院脊柱二科
Author(s):
-
关键词:
脊髓损伤可注射生物材料水凝胶纳米颗粒复合材料外泌体间充质干细胞
Keywords:
-
分类号:
-
DOI:
-
文献标识码:
-
摘要:
脊髓损伤(SCI)常与高能量机械冲击有关,而现有治疗方法往往无法取得预期效果。多项研究均表明,采 用来源于骨髓间充质干细胞的外泌体(MSC-Exo)治疗SCI 效果确切。将负载MSC-Exo 的可注射材料直接注射到病 变部位,使之在促进SCI 部位修复的同时充当修复支架,已成为优化外泌体治疗SCI 效果的新方向。与传统方法相比, 使用可注射材料优势更明显,即通过微创技术将药物直接注射到靶组织中可以避免二次损伤,保证药物作用时间长 而稳定,并可有效填充病变腔和诱导桥接效应,从而实现SCI 组织的有效修复。该文将就近年来负载MSC-Exo 的可 注射材料治疗SCI 的研究进展进行综述,总结可注射材料的优点,为后续研究提供参考。
Abstract:
-

参考文献/References

[1] Lundberg AS, Andersen MK, Kasch H, et al. Patients with spinal cord injuries experience many sequelae[J]. Ugeskr Laeger, 2015, 177(43): V06150476.
[2] Shende P, Subedi M. Pathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injury[J]. Biomed Pharmacother, 2017, 91: 693-706.
[3] Tran AP, Warren PM, Silver J. The biology of regeneration failure and success after spinal cord injury[J]. Physiol Rev, 2018, 98(2): 881- 917.
[4] Fan B, Wei Z, Feng S. Progression in translational research on spinal cord injury based on microenvironment imbalance[J]. Bone Res, 2022, 10(1): 35.
[5] Wang J, Zhang F, Xu H, et al. TLR4 aggravates microglial pyroptosis by promoting DDX3X-mediated NLRP3 inflammasome activation via JAK2/STAT1 pathway after spinal cord injury[J]. Clin Transl Med, 2022, 12(6): e894.
[6] Luo Z, Peng W, Xu Y, et al. Exosomal OTULIN from M2 macrophages promotes the recovery of spinal cord injuries via stimulating Wnt/β-catenin pathway-mediated vascular regeneration[J]. Acta Biomater, 2021, 136: 519-532.
[7] Zhang Y, Qin Y, Chopp M, et al. Ischemic cerebral endothelial cellderived exosomes promote axonal growth[J]. Stroke, 2020, 51(12): 3701-3712.
[8] Anderson MA, Burda JE, Ren Y, et al. Astrocyte scar formation aids central nervous system axon regeneration[J]. Nature, 2016, 532(7598): 195-200.
[9] Pan D, Li Y, Yang F, et al. Increasing toll-like receptor 2 on astrocytes induced by Schwann cell-derived exosomes promotes recovery by inhibiting CSPGs deposition after spinal cord injury[J]. J Neuroinflammation, 2021, 18(1): 172.
[10] Lee M, Ban JJ, Yang S, et al. The exosome of adipose-derived stem cells reduces β-amyloid pathology and apoptosis of neuronal cells derived from the transgenic mouse model of Alzheimer's disease[J]. Brain Res, 2018, 1691: 87-93.
[11] Xiao Y, Geng F, Wang G, et al. Bone marrow-derived mesenchymal stem cells-derived exosomes prevent oligodendrocyte apoptosis through exosomal miR-134 by targeting caspase-8[J]. J Cell Biochem, 2018, [Epub ahead of print].
[12] Fan H, Chen Z, Tang HB, et al. Exosomes derived from olfactory ensheathing cells provided neuroprotection for spinal cord injury by switching the phenotype of macrophages/microglia[J]. Bioeng Transl Med, 2021, 7(2): e10287.
[13] Zhou Z, Li C, Bao T, et al. Exosome-shuttled miR-672-5p from anti-inflammatory microglia repair traumatic spinal cord injury by inhibiting AIM2/ASC/Caspase-1 signaling pathway mediated neuronal pyroptosis[J]. J Neurotrauma, 2022, 39(15-16): 1057-1074.
[14] Sun G, Li G, Li D, et al. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation[J]. Mater Sci Eng C Mater Biol Appl, 2018, 89: 194- 204.
[15] Chen L, Wang W, Lin Z, et al. Conducting molybdenum sulfide/ graphene oxide/polyvinyl alcohol nanocomposite hydrogel for repairing spinal cord injury[J]. J Nanobiotechnology, 2022, 20(1): 210.
[16] Safari B, Aghazadeh M, Davaran S, et al. Exosome-loaded hydrogels: a new cell-free therapeutic approach for skin regeneration[J]. Eur J Pharm Biopharm, 2022, 171: 50-59.
[17] Zhang K, Feng Q, Fang Z, et al. Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics[J]. Chem Rev, 2021, 121(18): 11149-11193.
[18] Guo B, Ma PX. Conducting polymers for tissue engineering[J]. Biomacromolecules, 2018, 19(6): 1764-1782.
[19] Li X, Zhang C, Haggerty AE, et al. The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord[J]. Biomaterials, 2020, 245: 119978.
[20] Piantanida E, Alonci G, Bertucci A, et al. Design of nanocomposite injectable hydrogels for minimally invasive surgery[J]. Acc Chem Res, 2019, 52(8): 2101-2112.
[21] Fan L, Liu C, Chen X, et al. Exosomes-loaded electroconductive hydrogel synergistically promotes tissue repair after spinal cord injury via immunoregulation and enhancement of myelinated axon growth[J]. Adv Sci (Weinh), 2022, 9(13): e2105586.
[22] Cheng J, Chen Z, Liu C, et al. Bone mesenchymal stem cell-derived exosome-loaded injectable hydrogel for minimally invasive treatment of spinal cord injury[J]. Nanomedicine (Lond), 2021, (18): 1567- 1579.
[23] Li L, Zhang Y, Mu J, et al. Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury[J]. Nano Lett, 2020, 20(6): 4298-4305.
[24] Mukhamedshina YO, Akhmetzyanova ER, Kostennikov AA, et al. Adipose-derived mesenchymal stem cell application combined with fibrin matrix promotes structural and functional recovery following spinal cord injury in rats[J]. Front Pharmacol, 2018, 9: 343.
[25] Zaviskova K, Tukmachev D, Dubisova J, et al. Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair[J]. J Biomed Mater Res A, 2018, 106(4): 1129-1140.
[26] Yao M, Li J, Zhang J, et al. Dual-enzymatically cross-linked gelatin hydrogel enhances neural differentiation of human umbilical cord mesenchymal stem cells and functional recovery in experimental murine spinal cord injury[J]. J Mater Chem B, 2021, 9(2): 440-452.
[27] Drobnik J, Pietrucha K, Kudzin M, et al. Comparison of various types of collagenous scaffolds applied for embryonic nerve cell culture[J]. Biologicals, 2017, 46: 74-80.
[28] Santi S, Corridori I, Pugno NM, et al. Injectable scaffold-systems for the regeneration of spinal cord: advances of the past decade[J]. ACS Biomater Sci Eng, 2021, 7(3): 983-999.
[29] Raghav PK, Mann Z, Ahlawat S, et al. Mesenchymal stem cellbased nanoparticles and scaffolds in regenerative medicine[J]. Eur J Pharmacol, 2022, 918: 174657.
[30] Barjesteh T, Mansur S, Bao Y. Inorganic nanoparticle-loaded exosomes for biomedical applications[J]. Molecules, 2021, 26(4): 1135.
[31] Yu Y, Yang T, Sun T. New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer[J]. Nanomedicine (Lond), 2020, 15(11): 1127-1145.
[32] Chang M, Chang YJ, Chao PY, et al. Exosome purification based on PEG-coated Fe3O4 nanoparticles[J]. PLoS One, 2018, 13(6): e0199438.
[33] Azizi M, Farahmandghavi F, Joghataei MT, et al. ChABC-loaded PLGA nanoparticles: a comprehensive study on biocompatibility, functional recovery, and axonal regeneration in animal model of spinal cord injury[J]. Int J Pharm, 2020, 577: 119037.
[34] Han GH, Ko WK, Kim SJ, et al. Neuron-inducing therapy using embryonic neural progenitor cells embedding positively charged gold nanoparticles in rats with complete spinal cord injury[J]. Clin Transl Med, 2022, 12(7): e981.
[35] Kim HY, Kumar H, Jo MJ, et al. Therapeutic efficacy-potentiated and diseased organ-targeting nanovesicles derived from mesenchymal stem cells for spinal cord injury treatment[J]. Nano Lett, 2018, 18(8): 4965-4975.
[36] He W, Zhang X, Li X, et al. A decellularized spinal cord extracellular matrix-gel/GelMA hydrogel three-dimensional composite scaffold promotes recovery from spinal cord injury via synergism with human menstrual blood-derived stem cells[J]. J Mater Chem B, 2022, 10(30):5753-5764.
[37] Haggerty AE, Maldonado-Lasunción I, Nitobe Y, et al. The effects of the combination of mesenchymal stromal cells and nanofiberhydrogel composite on repair of the contused spinal cord[J]. Cells, 2022, 11(7):1137.
[38] Zarepour A, Bal ?ztürk A, Koyuncu Irmak D, et al. Combination therapy using nanomaterials and stem cells to treat spinal cord injuries[J]. Eur J Pharm Biopharm, 2022, 177: 224-240.
[39] Koffler J, Zhu W, Qu X, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair[J]. Nat Med, 2019, 25(2): 263-269.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金(51403086)
通信作者: 崔学文 E-mail: cui5898@sohu.com
更新日期/Last Update: 2022-12-01