|本期目录/Table of Contents|

[1]陶星光,周凯华,何小健,等.基于骨折信息融合的混合现实技术引导骨盆螺钉植入的研究[J].国际骨科学杂志,2022,05:314-318.
 TAO Xingguang,ZHOU Kaihua,HE Xiaojian,et al.Preliminary study of pelvic screw insertion guided by mixed reality technology based on fracture information fusion[J].International Journal of Orthopaedics,2022,05:314-318.
点击复制

基于骨折信息融合的混合现实技术引导骨盆螺钉植入的研究(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2022年05期
页码:
314-318
栏目:
实验研究
出版日期:
2022-10-01

文章信息/Info

Title:
Preliminary study of pelvic screw insertion guided by mixed reality technology based on fracture information fusion
文章编号:
10.3969/j.issn.1673-7083.2022.05.012
作者:
陶星光;周凯华;何小健;潘福根;
201700 上海, 复旦大学附属中山医院青浦分院骨科
Author(s):
TAO Xingguang ZHOU Kaihua HE Xiaojian PAN Fugen.
Department of Orthopedics, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
关键词:
骨盆髋臼混合现实技术螺钉骨折
Keywords:
Pelvis Acetabulum Mixed reality Screw Fracture
分类号:
-
DOI:
-
文献标识码:
-
摘要:
目的 研究基于骨折信息融合的混合现实技术引导骨盆通道螺钉精确植入的可行性。方法 将5 例髋臼 T 型骨折骨与周围软组织仿真模型制作成模拟改良Stoppa 入路复位后的骨折模型,通过Mimics 软件设计逆行耻骨上 支螺钉通道,导入Hololens 设备,通过基于骨折信息的虚实图像配准技术引导真实导针及螺钉的植入,每例模型辅助 进行1 枚逆行耻骨上支螺钉植入。术后通过CT 图像测量评估与术前规划螺钉位置的差异。结果 术后经CT 检查验证, 5 例髋臼骨折模型耻骨上支逆行螺钉置入位置入钉点位移差为(3.30±0.67)mm,螺钉头位移差为(3.96±0.70)mm, 空间角度误差为1.54° ±0.27°,螺钉全部位于骨通道中,未穿出骨皮质。结论 基于骨折信息融合的混合现实技术能 够引导骨盆通道螺钉的精确置入,为骨盆置钉提供了一种新方法。
Abstract:
Objective To study the feasibility of pelvic cannulated screw insertion guided by mixed reality technology based on fracture information fusion. Methods Five cases of an acetabular T-type fracture bone and surrounding soft tissue simulation model imitated

参考文献/References

[1] 吴新宝. 骨盆与髋臼骨折的评述与展望[J]. 中华创伤骨科杂志, 2019, 21(6): 461-463.
[2] Gras F, Marintschev I, Wilharm A, et al. 2D-fluoroscopic navigated percutaneous screw fixation of pelvic ring injurie:a case series[J]. BMC Musculoskelet Disord, 2010, 11: 153.
[3] 谢毅, 张加尧, 叶哲伟. 混合现实技术在创伤骨科的应用与展望 [J]. 中华创伤骨科杂志, 2020, 22(11): 1009-1012.
[4] Shih YC, Beaubien BP, Chen Q, et al. Biomechanical evaluation of sacroiliac joint fixation with decortication[J]. Spine J, 2018, 18(7): 1241-1249.
[5] Lee CH, Hsu CC, Huang PY. Biomechanical study of different fixation techniques for the treatment of sacroiliac joint injuries using finite element analyses and biomechanical tests[J]. Comput Biol Med, 2017, 87: 250-257.
[6] D?upa V, Němec J, Pavlí?ko Z, et al. Minimal invasive fixation of pelvic injury: CT-study of the pelvic bone dimensions[J]. Acta Chir Orthop Traumatol Cech, 2016, 83: 147-154.
[7] 孟昊业, 汪爱媛, 许文静, 等. 逆行螺钉置入固定骨盆耻骨上支 骨折的数字解剖学参数[J]. 解放军医学院学报, 2018, 39(6): 520- 522.
[8] Wang H, Wang F, Leong AP, et al. Precision insertion of percutaneous sacroiliac screws using a novel augmented reality-based navigation system: a pilot study[J]. Int Orthop, 2016, 40(9): 1941-1947.
[9] 陶星光, 周凯华. 基于外固定支架的3D 打印导板在骨盆骨折中 的应用[J]. 中华创伤骨科杂志, 2018, 20(3): 235-241.
[10] Zhou K, Tao X, Pan F, et al. A novel patient-specific threedimensional printing template based on external fixation for pelvic screw insertion[J]. J Invest Surg, 2022, 35(2): 459-466.
[11] Zuo Y, Jiang T, Dou J, et al. A novel evaluation model for a mixedreality surgical navigation system: where microsoft HoloLens meets the operating room[J]. Surg Innov, 2020, 27(2): 193-202.
[12] Birlo M, Edwards P, Clarkson M, et al. Utility of optical see-through head mounted displays in augmented reality-assisted surgery: a systematic review[J]. Med Image Anal, 2022, 77: 102361.
[13] Yuk FJ, Maragkos GA, Sato K, et al. Current innovation in virtual and augmented reality in spine surgery[J]. Ann Transl Med, 2021, 9(1): 94.
[14] Alexander C, Loeb AE, Fotouhi J, et al. Augmented reality for acetabular component placement in direct anterior total hip arthroplasty[J]. J Arthroplasty, 2020, 35(6): 1636-1641.e3.
[15] Adrian ET, Gustav B, Rami N, et al. Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging: a first in-human prospective cohort study[J]. Spine (Phila Pa 1976), 2019, 44(7): 517-525.
[16] Choi H, Park Y, Lee S, et al. A portable surgical navigation device to display resection planes for bone tumor surgery[J]. Minim Invasive Ther Allied Technol, 2017, 26(3): 144-150.
[17] Nguyen NQ, Cardinell J, Ramjist JM, et al. An augmented reality system characterization of placement accuracy in neurosurgery[J]. J Clin Neurosci, 2020, 72: 392-396.
[18] Liu Y, Song Z, Wang M. A new robust markerless method for automatic image-to-patient registration in image-guided neurosurgery system[J]. Computer Assisted Surgery, 2017, 22(Suppl 1): 319-325.
[19] Wu ML, Chien JC, Wu CT, et al. An augmented reality system using improved-iterative closest point algorithm for on-patient medical image visualization[J]. Sensors (Basel), 2018, 18(8): 2505.
[20] Pepe A, Trotta GF, Mohr-Ziak P, et al. A marker-less registration approach for mixed reality-aided maxillofacial surgery: a pilot evaluation[J]. J Digit Imaging, 2019, 32(6): 1008-1018.
[21] Liebmann F, Roner S, von Atzigen M, et al. Pedicle screw navigation using surface digitization on the Microsoft HoloLens[J]. Int J Comput Assist Radiol Surg, 2019, 14(7): 1157-1165.

备注/Memo

备注/Memo:
基金项目: 上海市青浦区卫生健康委员会科研课题(W2020-08、W2019-40)
通信作者: 周凯华 E-mail: 1983216145@sohu.com
更新日期/Last Update: 2022-10-01