[1] 吴新宝. 骨盆与髋臼骨折的评述与展望[J]. 中华创伤骨科杂志,
2019, 21(6): 461-463.
[2] Gras F, Marintschev I, Wilharm A, et al. 2D-fluoroscopic navigated
percutaneous screw fixation of pelvic ring injurie:a case series[J].
BMC Musculoskelet Disord, 2010, 11: 153.
[3] 谢毅, 张加尧, 叶哲伟. 混合现实技术在创伤骨科的应用与展望
[J]. 中华创伤骨科杂志, 2020, 22(11): 1009-1012.
[4] Shih YC, Beaubien BP, Chen Q, et al. Biomechanical evaluation of
sacroiliac joint fixation with decortication[J]. Spine J, 2018, 18(7):
1241-1249.
[5] Lee CH, Hsu CC, Huang PY. Biomechanical study of different
fixation techniques for the treatment of sacroiliac joint injuries using
finite element analyses and biomechanical tests[J]. Comput Biol Med,
2017, 87: 250-257.
[6] D?upa V, Němec J, Pavlí?ko Z, et al. Minimal invasive fixation of
pelvic injury: CT-study of the pelvic bone dimensions[J]. Acta Chir
Orthop Traumatol Cech, 2016, 83: 147-154.
[7] 孟昊业, 汪爱媛, 许文静, 等. 逆行螺钉置入固定骨盆耻骨上支
骨折的数字解剖学参数[J]. 解放军医学院学报, 2018, 39(6): 520-
522.
[8] Wang H, Wang F, Leong AP, et al. Precision insertion of percutaneous
sacroiliac screws using a novel augmented reality-based navigation
system: a pilot study[J]. Int Orthop, 2016, 40(9): 1941-1947.
[9] 陶星光, 周凯华. 基于外固定支架的3D 打印导板在骨盆骨折中
的应用[J]. 中华创伤骨科杂志, 2018, 20(3): 235-241.
[10] Zhou K, Tao X, Pan F, et al. A novel patient-specific threedimensional
printing template based on external fixation for pelvic
screw insertion[J]. J Invest Surg, 2022, 35(2): 459-466.
[11] Zuo Y, Jiang T, Dou J, et al. A novel evaluation model for a mixedreality
surgical navigation system: where microsoft HoloLens meets
the operating room[J]. Surg Innov, 2020, 27(2): 193-202.
[12] Birlo M, Edwards P, Clarkson M, et al. Utility of optical see-through
head mounted displays in augmented reality-assisted surgery: a
systematic review[J]. Med Image Anal, 2022, 77: 102361.
[13] Yuk FJ, Maragkos GA, Sato K, et al. Current innovation in virtual
and augmented reality in spine surgery[J]. Ann Transl Med, 2021,
9(1): 94.
[14] Alexander C, Loeb AE, Fotouhi J, et al. Augmented reality for
acetabular component placement in direct anterior total hip
arthroplasty[J]. J Arthroplasty, 2020, 35(6): 1636-1641.e3.
[15] Adrian ET, Gustav B, Rami N, et al. Pedicle screw placement
using augmented reality surgical navigation with intraoperative 3D
imaging: a first in-human prospective cohort study[J]. Spine (Phila Pa
1976), 2019, 44(7): 517-525.
[16] Choi H, Park Y, Lee S, et al. A portable surgical navigation device to
display resection planes for bone tumor surgery[J]. Minim Invasive
Ther Allied Technol, 2017, 26(3): 144-150.
[17] Nguyen NQ, Cardinell J, Ramjist JM, et al. An augmented reality
system characterization of placement accuracy in neurosurgery[J]. J
Clin Neurosci, 2020, 72: 392-396.
[18] Liu Y, Song Z, Wang M. A new robust markerless method for
automatic image-to-patient registration in image-guided neurosurgery
system[J]. Computer Assisted Surgery, 2017, 22(Suppl 1): 319-325.
[19] Wu ML, Chien JC, Wu CT, et al. An augmented reality system using
improved-iterative closest point algorithm for on-patient medical
image visualization[J]. Sensors (Basel), 2018, 18(8): 2505.
[20] Pepe A, Trotta GF, Mohr-Ziak P, et al. A marker-less registration
approach for mixed reality-aided maxillofacial surgery: a pilot
evaluation[J]. J Digit Imaging, 2019, 32(6): 1008-1018.
[21] Liebmann F, Roner S, von Atzigen M, et al. Pedicle screw navigation
using surface digitization on the Microsoft HoloLens[J]. Int J Comput
Assist Radiol Surg, 2019, 14(7): 1157-1165.