索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]马国榕,郭洪章,李鹏飞,等.不同来源间充质干细胞的细胞外囊泡对骨关节炎的影响[J].国际骨科学杂志,2022,05:289-292.
点击复制

不同来源间充质干细胞的细胞外囊泡对骨关节炎的影响(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2022年05期
页码:
289-292
栏目:
综述
出版日期:
2022-10-01

文章信息/Info

Title:
-
文章编号:
10.3969/j.issn.1673-7083.2022.05.007
作者:
马国榕;郭洪章;李鹏飞;李海鹰;
730000 兰州, 甘肃中医药大学第一临床医学院(马国榕、 李鹏飞、李海鹰);730000 兰州, 甘肃省中医院骨科(郭洪章)
Author(s):
-
关键词:
间充质干细胞细胞外囊泡骨关节炎
Keywords:
-
分类号:
-
DOI:
-
文献标识码:
-
摘要:
间充质干细胞(MSC)的细胞外囊泡在骨关节炎进展过程中起到重要作用。研究表明,细胞外囊泡在促进 软骨再生、延缓软骨老化和成骨等方面发挥重要作用。而组织来源及培养条件不同的细胞外囊泡具有不同的生物学 效应,对骨关节炎的治疗作用也具有差异性。该文就不同来源MSC 及其细胞外囊泡对骨关节炎影响的研究进展进行 综述。
Abstract:
-

参考文献/References

[1] Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review[J]. JAMA, 2021, 325(6): 568-578.
[2] Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options[J]. Med Clin North Am, 2020, 104(2): 293-311.
[3] Fu K, Robbins SR, McDougall JJ. Osteoarthritis: the genesis of pain[J]. Rheumatology (Oxford), 2018, 57(suppl 4): iv43-iv50.
[4] Vasanthan J, Gurusamy N, Rajasingh S, et al. Role of human mesenchymal stem cells in regenerative therapy[J]. Cells, 2020, 10(1): 54.
[5] Mishra VK, Shih HH, Parveen F, et al. Identifying the therapeutic significance of mesenchymal stem cells[J]. Cells, 2020, 9(5): 1145.
[6] Costa LA, Eiro N, Fraile M, et al. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses[J]. Cell Mol Life Sci, 2021, 78(2): 447-467.
[7] Withrow J, Murphy C, Liu Y, et al. Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis[J]. Arthritis Res Ther, 2016, 18(1): 286.
[8] Tang TT, Wang B, Lv LL, et al. Extracellular vesicle-based nanotherapeutics: emerging frontiers in anti-inflammatory therapy[J]. Theranostics, 2020, 10(18): 8111-8129.
[9] Imafuku A, Sjoqvist S. Extracellular vesicle therapeutics in regenerative medicine[J]. Adv Exp Med Biol, 2021, 1312: 131-138.
[10] Zhao T, Sun F, Liu J, et al. Emerging role of mesenchymal stem cellderived exosomes in regenerative medicine[J]. Curr Stem Cell Res Ther, 2019, 14(6): 482-494.
[11] van den Bosch MHJ. Osteoarthritis year in review 2020: biology[J]. Osteoarthritis Cartilage, 2021, 29(2): 143-150.
[12] Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine[J]. Circ Res, 2007, 100(9): 1249-1260.
[13] Li Q, Yu H, Sun M, et al. The tissue origin effect of extracellular vesicles on cartilage and bone regeneration[J]. Acta Biomater, 2021, 125: 253-266.
[14] Tofi?o-Vian M, Guillén MI, Pérez Del Caz MD, et al. Extracellular vesicles from adipose-derived mesenchymal stem cells downregulate senescence features in osteoarthritic osteoblasts[J]. Oxid Med Cell Longev, 2017, 2017: 7197598.
[15] Tofi?o-Vian M, Guillén MI, Pérez Del Caz MD, et al. Microvesicles from human adipose tissue-derived mesenchymal stem cells as a new protective strategy in osteoarthritic chondrocytes[J]. Cell Physiol Biochem, 2018, 47(1): 11-25.
[16] Woo CH, Kim HK, Jung GY, et al. Small extracellular vesicles from human adipose-derived stem cells attenuate cartilage degeneration[J]. J Extracell Vesicles, 2020, 9(1): 1735249.
[17] Tao SC, Yuan T, Zhang YL, et al. Exosomes derived from miR-140- 5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model[J]. Theranostics, 2017, 7(1): 180-195.
[18] Reisbig NA, Pinnell E, Scheuerman L, et al. Synovium extra cellular matrices seeded with transduced mesenchymal stem cells stimulate chondrocyte maturation in vitro and cartilage healing in clinically-induced rat-knee lesions in vivo[J]. PLoS One, 2019, 14(3): e0212664.
[19] Mochizuki T, Muneta T, Sakaguchi Y, et al. Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans[J]. Arthritis Rheum, 2006, 54(3): 843-853.
[20] Archer CW, Dowthwaite GP, Francis-West P. Development of synovial joints[J]. Birth Defects Res C Embryo Today, 2003, 69(2): 144-155.
[21] Zhu Y, Wang Y, Zhao B, et al. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis[J]. Stem Cell Res Ther, 2017, 8(1): 64.
[22] Zamudio-Cuevas Y, Plata-Rodríguez R, Fernández-Torres J, et al. Synovial membrane mesenchymal stem cells for cartilaginous tissues repair[J]. Mol Biol Rep, 2022, 49(3): 2503-2517.
[23] 韩俊柱, 朱勋兵, 武世伍, 等. 3 种间充质干细胞成软骨分化潜能 比较[J]. 现代生物医学进展, 2019, 19(12): 2252-2255.
[24] Kubosch E J, Heidt E, Niemeyer P, et al. In-vitro chondrogenic potential of synovial stem cells and chondrocytes allocated for autologous chondrocyte implantation - a comparison : synovial stem cells as an alternative cell source for autologous chondrocyte implantation[J]. Int Orthop, 2017, 41(5): 991-998.
[25] Duan A, Shen K, Li B, et al. Extracellular vesicles derived from LPS-preconditioned human synovial mesenchymal stem cells inhibit extracellular matrix degradation and prevent osteoarthritis of the knee in a mouse model[J]. Stem Cell Res Ther, 2021, 12(1): 427.
[26] Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13: 308.
[27] Um S, Ha J, Choi SJ, et al. Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells[J]. World J Stem Cells, 2020, 12(12): 1511-1528.
[28] Ma K, Zhu B, Wang Z, et al. Articular chondrocyte-derived extracellular vesicles promote cartilage differentiation of human umbilical cord mesenchymal stem cells by activation of autophagy[J]. J Nanobiotechnology, 2020, 18(1): 163.
[29] Ding DC, Chang YH, Shyu WC, et al. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy[J]. Cell Transplant, 2015, 24(3): 339-347.
[30] Russo E, Caprnda M, Kruzliak P, et al. Umbilical cord mesenchymal stromal cells for cartilage regeneration applications[J]. Stem Cells Int, 2022, 2022: 2454168.
[31] Hu Y, Zhang Y, Ni CY, et al. Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism[J]. Theranostics, 2020, 10(5): 2293-2308.
[32] Yan L, Wu X. Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity[J]. Cell Biol Toxicol, 2020, 36(2): 165-178.
[33] Kuang MJ, Huang Y, Zhao XG, et al. Exosomes derived from Wharton's jelly of human umbilical cord mesenchymal stem cells reduce osteocyte apoptosis in glucocorticoid-induced osteonecrosis of the femoral head in rats via the miR-21-PTEN-AKT signalling pathway[J]. Int J Biol Sci, 2019, 15(9): 1861-1871.
[34] Tang S, Chen P, Zhang H, et al. Comparison of curative effect of human umbilical cord-derived mesenchymal stem cells and their small extracellular vesicles in treating osteoarthritis[J]. Int J Nanomedicine, 2021, 16: 8185-8202.
[35] Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: state-of-the-art review[J]. Sultan Qaboos Univ Med J, 2018, 18(3): e264-e277.
[36] Heo JS, Choi Y, Kim HS, et al. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue[J]. Int J Mol Med, 2016, 37(1): 115-125.
[37] Xu L, Liu Y, Sun Y, et al. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue[J]. Stem Cell Res Ther, 2017, 8(1): 275.
[38] Fazaeli H, Kalhor N, Naserpour L, et al. A comparative study on the effect of exosomes secreted by mesenchymal stem cells derived from adipose and bone marrow tissues in the treatment of osteoarthritisinduced mouse model[J]. Biomed Res Int, 2021, 2021: 9688138.
[39] Qin Y, Wang L, Gao Z, et al. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo[J]. Sci Rep, 2016, 6: 21961.
[40] Vonk LA, van Dooremalen SFJ, Liv N, et al. Mesenchymal stromal/ stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro[J]. Theranostics, 2018, 8(4): 906-920.
[41] 宋卓悦, 王洋, 连晓磊, 等. 人脂肪间充质干细胞和滑膜间充质干 细胞协同抑制炎性软骨细胞的退变[J]. 中国组织工程研究, 2018, 22(17): 2661-2668.
[42] Whitford W, Guterstam P. Exosome manufacturing status[J]. Future Med Chem, 2019, 11(10): 1225-1236.
[43] McKee C, Chaudhry GR. Advances and challenges in stem cell culture[J]. Colloids Surf B Biointerfaces, 2017, 159: 62-77.

备注/Memo

备注/Memo:
基金项目: 甘肃省青年博士基金项目(2021QB-081)
通信作者: 李海鹰 E-mail: lihy8111@126.com
更新日期/Last Update: 2022-10-01