索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]罗烨,赵雅琦,郭璐琦,等.基于双平面透视成像技术的在体颈椎生物力学研究进展[J].国际骨科学杂志,2022,05:277-280.
点击复制

基于双平面透视成像技术的在体颈椎生物力学研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2022年05期
页码:
277-280
栏目:
综述
出版日期:
2022-10-01

文章信息/Info

Title:
-
文章编号:
10.3969/j.issn.1673-7083.2022.05.004
作者:
罗烨;赵雅琦;郭璐琦;李凤;李霁欣;赵璇;黄小凡;王少白;
200438, 上海体育学院运动科学学院(罗烨、赵雅琦、 郭璐琦、李凤、李霁欣、赵璇、黄小凡、王少白);200438, 上海体育学 院运动科学学院“运动健身科技” 省部共建教育部重点实验室(王少白)
Author(s):
-
关键词:
双平面透视成像系统在体运动学颈椎颈椎融合术颈椎间盘置换术
Keywords:
-
分类号:
-
DOI:
-
文献标识码:
-
摘要:
在体生物力学分析有助于深入了解颈椎不同结构的运动特点,识别异常关节活动和治疗相关疾病。然而, 传统的生物力学观测方法一定程度上限制了颈椎的在体生物力学研究。经过近10年的发展,双平面透视成像系统(DFIS) 实现了对动态关节运动的非侵入性的精确测量,已广泛应用于影像学评估和临床生物力学评估领域,该方法可以量 化各颈椎节段的运动,并分析复杂的骨骼位置和运动模式。该文就基于DFIS 技术测量健康人群和手术后患者的颈椎 在体运动学研究进行综述。
Abstract:
-

参考文献/References

[1] 郭川, 刘庆鹏. 颈椎解剖与钛质网笼生物力学研究进展[J]. 医用 生物力学, 2021, 36(5): 829-834.
[2] Wang H, Zhou C, Yu Y, et al. Quantifying the ranges of relative motions of the intervertebral discs and facet joints in the normal cervical spine[J]. J Biomech, 2020, 112: 110023.
[3] Wang S, Passias P, Li G, et al. Measurement of vertebral kinematics using noninvasive image matching method-validation and application[J]. Spine (Phila Pa 1976), 2008, 33(11): E355-E361.
[4] McDonald CP, Bachison CC, Chang V, et al. Three-dimensional dynamic in vivo motion of the cervical spine: assessment of measurement accuracy and preliminary findings[J]. Spine J, 2010, 10(6): 497-504.
[5] Anderst WJ, Baillargeon E, Donaldson W, et al. Validation of a noninvasive technique to precisely measure in vivo three-dimensional cervical spine movement[J]. Spine (Phila Pa 1976), 2011, 36(6): E393-E400.
[6] Anderst WJ, Donaldson WF, Lee JY, et al. Cervical motion segment contributions to head motion during flexion/extension, lateral bending, and axial rotation[J]. Spine J, 2015, 15(12): 2538-2543.
[7] Anderst WJ, Donaldson WF, Lee JY, et al. Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading[J]. J Biomech, 2015, 48(7): 1286- 1293.
[8] Zhou C, Wang H, Wang C, et al. Intervertebral range of motion characteristics of normal cervical spinal segments (C0-T1) during in vivo neck motions[J]. J Biomech, 2020, 98: 109418.
[9] Kang J, Chen G, Zhai X, et al. In vivo three-dimensional kinematics of the cervical spine during maximal active head rotation[J]. PLoS One, 2019, 14(4): e0215357.
[10] Lin CC, Lu TW, Wang TM, et al. In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach[J]. J Biomech, 2014, 47(13): 3310-3317.
[11] Kolstad F, Myhr G, Kvistad KA, et al. Degeneration and height of cervical discs classified from MRI compared with precise height measurements from radiographs[J]. Eur J Radiol, 2005, 55(3): 415-420.
[12] Del PP, Calvo B, Doblaré M. An accurate finite element model of the cervical spine under quasi-static loading[J]. J Biomech, 2008, 41(3): 523–531.
[13] Kallemeyn N, Gandhi A, Kode S, et al. Validation of a C2-C7 cervical spine finite element model using specimen-specific flexibility data[J]. Med Eng Phys, 2010, 32(5): 482-489.
[14] Hussain M, Natarajan RN, An HS, et al. Progressive disc degeneration at C5-C6 segment affects the mechanics between disc heights and posterior facets above and below the degenerated segment: a flexionextension investigation using a poroelastic C3-T1 finite element model[J]. Med Eng Phys, 2012, 34(5): 552-558.
[15] Aour B, Damba N. Finite element investigation of the intervertebral disc behaviour[J]. Comput Methods Biomech Biomed Engin, 2014, 17 (Suppl 1): S58-S59.
[16] Yu Y, Mao H, Li JS, et al. Ranges of cervical intervertebral disc deformation during an in vivo dynamic flexion-extension of the neck[J]. J Biomech Eng, 2017, 139(6) : 0645011-0645017.
[17] Mao H, Driscoll SJ, Li JS, et al. Dimensional changes of the neuroforamina in subaxial cervical spine during in vivo dynamic flexion-extension[J]. Spine J, 2016, 16(4): 540-546.
[18] Chang V, Basheer A, Baumer T, et al. Dynamic measurements of cervical neural foramina during neck movements in asymptomatic young volunteers[J]. Surg Radiol Anat, 2017, 39(10): 1069-1078.
[19] Ma HS, Kim HJ, Van Alstyne EM, et al. Does postsurgical cervical deformity affect the risk of cervical adjacent segment pathology? A systematic review[J]. Spine (Phila Pa 1976), 2012, 37(Suppl 22): S75-S84.
[20] Kepler CK, Hilibrand AS. Management of adjacent segment disease after cervical spinal fusion[J]. Orthop Clin North Am, 2012, 43(1): 53-62.
[21] Hilibrand AS, Carlson GD, Palumbo MA, et al. Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis[J]. J Bone Joint Surg Am, 1999, 81(4): 519–528.
[22] Schwab JS, Diangelo DJ, Foley KT. Motion compensation associated with single-level cervical fusion: where does the lost motion go?[J]. Spine (Phila Pa 1976), 2006, 31(21): 2439-2448.
[23] Song KJ, Choi BW, Jeon TS, et al. Adjacent segment degenerative disease: is it due to disease progression or a fusion-associated phenomenon? Comparison between segments adjacent to the fused and non-fused segments[J]. Eur Spine J, 2011, 20(11): 1940-1945.
[24] 罗灿, 欧军, 卢政好, 等. 新型弧形带终板环颈椎钛网生物力学测 试[J]. 医用生物力学, 2022, 37(1): 85-90.
[25] Anderst WJ, Donaldson WF 3rd, Lee JY, et al. Cervical motion segment percent contributions to flexion-extension during continuous functional movement in control subjects and arthrodesis patients[J]. Spine (Phila Pa 1976), 2013, 38(9): E533-E539.
[26] Anderst WJ, Lee JY, Donaldson W, et al. Six-degrees-of-freedom cervical spine range of motion during dynamic flexion-extension after single-level anterior arthrodesis: comparison with asymptomatic control subjects[J]. J Bone Joint Surg Am, 2013, 95(6): 497-506.
[27] Fekete TF, Porchet F. Overview of disc arthroplasty-past, present and future[J]. Acta Neurochir (Wien), 2010, 152(3): 393-404.
[28] Verma K, Gandhi SD, Maltenfort M, et al. Rate of adjacent segment disease in cervical disc arthroplasty versus single-level fusion: metaanalysis of prospective studies[J]. Spine (Phila Pa 1976), 2013, 38(26): 2253-2257.
[29] McDonald CP, Chang V, McDonald M, et al. Three-dimensional motion analysis of the cervical spine for comparison of anterior cervical decompression and fusion versus artificial disc replacement in 17 patients: clinical article[J]. J Neurosurg Spine, 2014, 20(3): 245- 255.
[30] Azad S, Oravec D, Baumer T, et al. Dynamic foraminal dimensions during neck motion 6.5 years after fusion and artificial disc replacement[J]. PLoS One, 2020, 15(8): e0237350.
[31] Anderst WJ, Donaldson WF, Lee JY, et al. Cervical spine intervertebral kinematics with respect to the head are different during flexion and extension motions[J]. J Biomech, 2013, 46(8): 1471- 1475.
[32] Anderst W, Baillargeon E, Donaldson W, et al. Motion path of the instant center of rotation in the cervical spine during in vivo dynamic flexion-extension: implications for artificial disc design and evaluation of motion quality after arthrodesis[J]. Spine (Phila Pa 1976), 2013, 38(10): E594-E601.
[33] Kim SH, Ham DW, Lee JI, et al. Locating the instant center of rotation in the subaxial cervical spine with biplanar fluoroscopy during in vivo dynamic Flexion-Extension[J]. Clin Orthop Surg, 2019, 11(4): 482-489.
[34] Anderst W, Rynearson B, West T, et al. Dynamic in vivo 3D atlantoaxial spine kinematics during upright rotation[J]. J Biomech, 2017, 60: 110-115.
[35] Tan J, Zou D, Zhang X, et al. Loss of knee flexion and femoral rollback of the Medial-Pivot and Posterior-Stabilized total knee arthroplasty during Early-Stance of walking in Chinese patients[J]. Front Bioeng Biotechnol, 2021, 9: 675093.
[36] Anderst W, Donaldson W, Lee J, et al. Cervical disc deformation during flexion-extension in asymptomatic controls and single-level arthrodesis patients[J]. J Orthop Res, 2013, 31(12): 1881-1889.
[37] Miyazaki M, Hong SW, Yoon SH, et al. Kinematic analysis of the relationship between the grade of disc degeneration and motion unit of the cervical spine[J]. Spine (Phila Pa 1976), 2008, 33(2): 187-193.
[38] Edmondston SJ, Henne S, Loh W, et al. Influence of cranio-cervical posture on three-dimensional motion of the cervical spine[J]. Man Ther, 2005, 10(1): 44-51.

备注/Memo

备注/Memo:
基金项目: 科技部重点研发计划( 2018YFF0300504) 、173 基础加强计 划重点基础研究项目(2020-JCJQ-ZD-264)、上海市优秀学术/ 技术带头人 计划资助(21XD1434800)
通信作者: 王少白 E-mail : wangs@innomotion.Biz
更新日期/Last Update: 2022-10-01