索引超出了数组界限。
[1] Etoh T, Yamamoto N, Shinagawa K, et al. Mechanism and patterns of
bone loss in patients with anterior shoulder dislocation[J]. J Shoulder
Elbow Surg, 2020, 29(10): 1974-1980.
[2] Di Giacomo G, Itoi E, Burkhart SS. Evolving concept of bipolar bone
loss and the Hill-Sachs lesion: from “engaging/non-engaging” lesion
to“ on-track/off-track” lesion[J]. Arthroscopy, 2014, 30(1): 90-98.
[3] Nakagawa S, Iuchi R, Hanai H, et al. The development process of
bipolar bone defects from primary to recurrent instability in shoulders
with traumatic anterior instability[J]. Am J Sports Med, 2019, 47(3):
695-703.
[4] Golijanin P, Peebles L, Arner JW, et al. Advanced 3-dimensional
characterization of Hill-Sachs lesions in 100 anterior shoulder
instability patients[J]. Arthroscopy, 2021, 37(11): 3255-3261.
[5] Nakagawa S, Ozaki R, Take Y, et al. Relationship between glenoid
defects and Hill-Sachs lesions in shoulders with traumatic anterior
instability[J]. Am J Sports Med, 2015, 43(11): 2763-2773.
[6] Shaha JS, Cook JB, Song DJ, et al. Redefining“ critical” bone loss in
shoulder instability: functional outcomes worsen with “subcritical”
bone loss[J]. Am J Sports Med, 2015, 43(7): 1719-1725.
[7] Shin SJ, Kim RG, Jeon YS, et al. Critical value of anterior glenoid
bone loss that leads to recurrent glenohumeral instability after
arthroscopic bankart repair[J]. Am J Sports Med, 2017, 45(9): 1975-
1981.
[8] Sigrist B, Ferguson S, Boehm E, et al. The biomechanical effect of
bone grafting and bone graft remodeling in patients with anterior
shoulder instability[J]. Am J Sports Med, 2020, 48(8): 1857-1864.
[9] Wong I, John R, Ma J, et al. Arthroscopic anatomic glenoid
reconstruction using distal tibial allograft for recurrent anterior
shoulder instability: clinical and radiographic outcomes[J]. Am J
Sports Med, 2020, 48(13): 3316-3321.
[10] Gilat R, Haunschild ED, Lavoie-Gagne OZ, et al. Outcomes of the
latarjet procedure versus free bone block procedures for anterior
shoulder instability: a systematic review and meta-analysis[J]. Am J
Sports Med, 2021, 49(3): 805-816.
[11] Maio M, Sarmento M, Moura N, et al. How to measure a Hill-Sachs
lesion: a systematic review[J]. EFORT Open Rev, 2019, 4(4): 151-
157.
[12] Schneider AK, Hoy GA, Ek ET, et al. Interobserver and intraobserver
variability of glenoid track measurements[J]. J Shoulder Elbow Surg,
2017, 26(4): 573-579.
[13] Burkhart SS, De Beer JF. Traumatic glenohumeral bone defects
and their relationship to failure of arthroscopic Bankart repairs:
significance of the inverted-pear glenoid and the humeral engaging
Hill-Sachs lesion[J]. Arthroscopy, 2000, 16(7): 677-694.
[14] Lee YJ, Kim C, Kim SJ, et al. Does an “off-trac” Hill-Sachs lesion
that is misclassified as “non-engaging” affect outcomes from
bankart repair alone compared with bankart repair combined with
remplissage?[J]. Arthroscopy, 2021, 37(2): 450-456.
[15] Gowd AK, Liu JN, Cabarcas BC, et al. Management of recurrent
anterior shoulder instability with bipolar bone loss: a systematic
review to assess critical bone loss amounts[J]. Am J Sports Med,
2019, 47(10): 2484-2493.
[16] Rowe CR, Zarins B, Ciullo JV. Recurrent anterior dislocation of
the shoulder after surgical repair. Apparent causes of failure and
treatment[J]. J Bone Joint Surg Am, 1984, 66(2): 159-168.
[17] Peebles LA, Golijanin P, Peebles AM, et al. Glenoid bone loss
directly affects Hill-Sachs morphology: an advanced 3-dimensional analysis[J]. Am J Sports Med, 2022, 50(9): 2469-2475.
[18] Yamamoto N, Itoi E, Abe H, et al. Contact between the glenoid and
the humeral head in abduction, external rotation, and horizontal
extension: a new concept of glenoid track[J]. J Shoulder Elbow Surg,
2007, 16(5): 649-656.
[19] Curtis AS, Burbank KM, Tierney JJ, et al. The insertional footprint of the
rotator cuff: an anatomic study[J]. Arthroscopy, 2006, 22(6): 609.e1.
[20] Omori Y, Yamamoto N, Koishi H, et al. Measurement of the glenoid
track in vivo as investigated by 3-dimensional motion analysis using
open MRI[J]. Am J Sports Med, 2014, 42(6): 1290-1295.
[21] Li RT, Kane G, Drummond M, et al. On-track lesions with a small
distance to dislocation are associated with failure after arthroscopic
anterior shoulder stabilization[J]. J Bone Joint Surg Am, 2021,
103(11): 961-967.
[22] Chen KH, Yang TC, Chiang ER, et al. The Hill-Sachs interval to
glenoid track width ratio is comparable to the instability severity
index score for predicting risk of recurrent instability after
arthroscopic Bankart repair[J]. Knee Surg Sports Traumatol Arthrosc,
2021, 29(1): 250-256.
[23] Stefaniak J, KubickA AM, Wawrzyniak A, et al. Reliability of
humeral head measurements performed using two- and threedimensional
computed tomography in patients with shoulder
instability[J]. Int Orthop, 2020, 44(10): 2049-2056.
[24] Vopat ML, Peebles LA, Mcbride T, et al. Accuracy and reliability of
imaging modalities for the diagnosis and quantification of Hill-Sachs
lesions: a systematic review[J]. Arthroscopy, 2021, 37(1): 391-401.
[25] Mulleneers LIC, Van Rompaey H, Haloui B, et al. Determining
on-/off-track lesions in glenohumeral dislocation using multiplanar
reconstruction computed tomography is easier and more reproducible
than using 3-dimensional computed tomography[J]. Am J Sports
Med, 2021, 49(1): 137-145.
[26] Funakoshi T, Hartzler RU, Stewien E, et al. Hill-Sachs lesion
classification by the glenoid track paradigm in shoulder instability:
poor agreement between 3-dimensional computed tomographic and
arthroscopic methods[J]. Arthroscopy, 2019, 35(6): 1743-1749.
[27] Di Giacomo G, Peebles LA, Pugliese M, et al. Glenoid track
instability management score: radiographic modification of the
instability severity index score[J]. Arthroscopy, 2020, 36(1): 56-67.
[28] Yamamoto N, Shinagawa K, Hatta T, et al. Peripheral-track and
central-track Hill-Sachs lesions: a new concept of assessing an ontrack
lesion[J]. Am J Sports Med, 2020, 48(1): 33-38.
[29] Polio W, Brolin TJ. Remplissage for anterior shoulder instability:
history, indications, and outcomes[J]. Orthop Clin North Am, 2022,
53(3): 327-338.
[30] Moroder P, Schulz E, Wierer G, et al. Neer Award 2019: Latarjet
procedure vs. iliac crest bone graft transfer for treatment of anterior
shoulder instability with glenoid bone loss: a prospective randomized
trial[J]. J Shoulder Elbow Surg, 2019, 28(7): 1298-1307.
[31] Scanaliato JP, Dunn JC, Fitzpatrick KV, et al. Double-pulley
remplissage in active-duty military population with off-track anterior
shoulder instability results in improved outcomes and low recurrence
at minimum 4-year follow-up[J]. Arthroscopy, 2022, 38(3): 743-749.
[32] Yang JS, Mehran N, Mazzocca AD, et al. Remplissage versus
modified latarjet for off-track Hill-Sachs lesions with subcritical
glenoid bone loss[J]. Am J Sports Med, 2018, 46(8): 1885-1891.
[33] Gouveia K, Abidi SK, Shamshoon S, et al. Arthroscopic bankart
repair with remplissage in comparison to bone block augmentation
for anterior shoulder instability with bipolar bone loss: a systematic
review[J]. Arthroscopy, 2021, 37(2): 706-717.
[34] Calvo C, Calvo J, Rojas D, et al. Clinical relevance of persistent offtrack
Hill-Sachs lesion after arthroscopic latarjet procedure[J]. Am J
Sports Med, 2021, 49(8): 2006-2012.
[35] Plath JE, Henderson DJH, Coquay J, et al. Does the arthroscopic
latarjet procedure effectively correct “off-track”Hill-Sachs
lesions?[J]. Am J Sports Med, 2018, 46(1): 72-78.
[36] Callegari JJ, McGarry M, Crook L, et al. The addition of remplissage
to free bone block restores translation and stiffness compared to bone
block alone or latarjet in a bipolar bone loss model[J]. Arthroscopy,
2022, [Epub ahead of print].
[37] 代飞, 杨金松, 张清, 等. 三维CT 测量肩关节复发前脱位肩胛盂
轨迹的可靠性研究[J]. 中国骨伤, 2021, 34(6): 492-496.
[38] Mochizuki T, Sugaya H, Uomizu M, et al. Humeral insertion of the
supraspinatus and infraspinatus. New anatomical findings regarding
the footprint of the rotator cuff[J]. J Bone Joint Surg Am, 2008, 90(5):
962-969.
[39] Chalmers PN, Christensen G, O'Neill D, et al. Does bone loss
imaging modality, measurement methodology, and interobserver
reliability alter treatment in glenohumeral instability?[J]. Arthroscopy,
2020, 36(1): 12-19.
[40] Kawakami J, Yamamoto N, Etoh T, et al. In vivo glenoid track width
can be better predicted with the use of shoulder horizontal extension
angle[J]. Am J Sports Med, 2019, 47(4): 922-927.
[41] Yamamoto N, Kawakami J, Nagamoto H, et al. The relationship
between the glenoid track and the range of shoulder motion: a
cadaver study[J]. Orthop Traumatol Surg Res, 2018, 104(6): 793-796.
[42] Montgomery C, O'Briain DE, Hurley ET, et al. Video analysis
of shoulder dislocations in rugby: insights into the dislocating
mechanisms[J]. Am J Sports Med, 2019, 47(14): 3469-3475.
[43] Ernstbrunner L, Werthel JD, Hatta T, et al. Biomechanical analysis
of the effect of congruence, depth and radius on the stability ratio of
a simplistic ‘ball-and-socket’ joint model[J]. Bone Joint Res, 2016,
5(10): 453-460.
[44] Nicolozakes CP, Ludvig D, Baillargeon EM, et al. Muscle contraction
has a reduced effect on increasing glenohumeral stability in the
apprehension position[J]. Med Sci Sports Exerc, 2021, 53(11): 2354-
2362.
[45] Inoue J, Takenaga T, Tsuchiya A, et al. Ultrasound assessment of
anterior humeral head translation in patients with anterior shoulder
instability: correlation with demographic, radiographic, and clinical
data[J]. Orthop J Sports Med, 2022, 10(7): 23259671221101924.
[46] Lim JR, Lee HM, Yoon TH, et al. Association between excessive joint
laxity and a wider Hill-Sachs lesion in anterior shoulder instability[J].
Am J Sports Med, 2021, 49(14): 3981-3987.
[47] Itoi E. ‘On-track' and ‘off-track' shoulder lesions[J]. EFORT Open
Rev, 2017, 2(8): 343-351.
[48] Moroder P, Damm P, Wierer G, et al. Challenging the current concept of critical glenoid bone loss in shoulder instability: does the size
measurement really tell it all?[J]. Am J Sports Med, 2019, 47(3): 688-
694.
[49] Wermers J, Schliemann B, Raschke MJ, et al. Glenoid concavity has
a higher impact on shoulder stability than the size of a bony defect[J].
Knee Surg Sports Traumatol Arthrosc, 2021, 29(8): 2631-2639.
[50] Wermers J, Raschke MJ, Wilken M, et al. The anatomy of glenoid
concavity-bony and osteochondral assessment of a stability-related
parameter[J]. J Clin Med, 2021, 10(19): 4316.
[51] Wermers J, Schliemann B, RaschkE MJ, et al. The glenolabral
articular disruption lesion is a biomechanical risk factor for recurrent
shoulder instability[J]. Arthrosc Sports Med Rehabil, 2021, 3(6):
e1803-e1810.
[52] Bhatia DN, Kandhari V. How does anterior glenoid bone loss affect
shoulder stability? A cadaveric analysis of glenoid concavity and
bony shoulder stability ratio[J]. J Shoulder Elbow Surg, 2022, 31(3):
553-560.
[53] Yates JB, Choudhry MN, Waseem M. Managing bony defects of the
shoulder joint that occur in association with dislocation[J]. Open
Orthop J, 2017, 11: 1245-1257.
[54] Cho SH, Cho NS, Rhee YG. Preoperative analysis of the Hill-Sachs
lesion in anterior shoulder instability: how to predict engagement of
the lesion[J]. Am J Sports Med, 2011, 39(11): 2389-2395.
[55] Di Giacomo G, Golijanin P, Sanchez G, et al. Radiographic analysis
of the hill-sachs lesion in anteroinferior shoulder instability after firsttime
dislocations[J]. Arthroscopy, 2016, 32(8): 1509-1514