索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|


点击复制

肩胛盂轨迹概念在肩关节前向不稳诊疗中的应用与挑战(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2022年05期
页码:
261-266
栏目:
综述
出版日期:
2022-10-01

文章信息/Info

Title:
-
文章编号:
10.3969/j.issn.1673-7083.2022.05.001
作者:
伍晨亮;赵金忠;
200233, 上海交通大学医学院附属第六人民医院运动医学科
Author(s):
-
关键词:
肩胛盂轨迹肩关节前向不稳双极骨缺损肩胛盂骨缺损Hill-Sachs 损伤
Keywords:
-
分类号:
-
DOI:
-
文献标识码:
-
摘要:
近些年,肩胛盂轨迹概念被提出并广泛应用于肩关节前向不稳的诊疗。该概念通过定义肩关节运动过程中 肩胛盂与肱骨头的接触区域,阐明了双极骨缺损之间几何上的相互作用关系。临床上可根据公式计算出肩胛盂轨迹 的宽度,通过比较Hill-Sachs 损伤内侧缘和肩胛盂轨迹内侧缘的相对位置,判断双极骨缺损的类型。近期研究证明了 肩胛盂轨迹在诊断分类、预后预测及治疗决策指导方面具有重要作用。然而,目前临床应用肩胛盂轨迹概念时仍存 在影像上识别参考标志的准确性欠佳、肩胛盂轨迹宽度公式的系数有待改良、缺乏对双极骨缺损其他关键参数的考 量等挑战。未来相关研究应着重解决这些问题以改进并完善当前基于肩胛盂轨迹概念的肩关节前向不稳诊疗体系。
Abstract:
-

参考文献/References

[1] Etoh T, Yamamoto N, Shinagawa K, et al. Mechanism and patterns of bone loss in patients with anterior shoulder dislocation[J]. J Shoulder Elbow Surg, 2020, 29(10): 1974-1980.
[2] Di Giacomo G, Itoi E, Burkhart SS. Evolving concept of bipolar bone loss and the Hill-Sachs lesion: from “engaging/non-engaging” lesion to“ on-track/off-track” lesion[J]. Arthroscopy, 2014, 30(1): 90-98.
[3] Nakagawa S, Iuchi R, Hanai H, et al. The development process of bipolar bone defects from primary to recurrent instability in shoulders with traumatic anterior instability[J]. Am J Sports Med, 2019, 47(3): 695-703.
[4] Golijanin P, Peebles L, Arner JW, et al. Advanced 3-dimensional characterization of Hill-Sachs lesions in 100 anterior shoulder instability patients[J]. Arthroscopy, 2021, 37(11): 3255-3261.
[5] Nakagawa S, Ozaki R, Take Y, et al. Relationship between glenoid defects and Hill-Sachs lesions in shoulders with traumatic anterior instability[J]. Am J Sports Med, 2015, 43(11): 2763-2773.
[6] Shaha JS, Cook JB, Song DJ, et al. Redefining“ critical” bone loss in shoulder instability: functional outcomes worsen with “subcritical” bone loss[J]. Am J Sports Med, 2015, 43(7): 1719-1725.
[7] Shin SJ, Kim RG, Jeon YS, et al. Critical value of anterior glenoid bone loss that leads to recurrent glenohumeral instability after arthroscopic bankart repair[J]. Am J Sports Med, 2017, 45(9): 1975- 1981.
[8] Sigrist B, Ferguson S, Boehm E, et al. The biomechanical effect of bone grafting and bone graft remodeling in patients with anterior shoulder instability[J]. Am J Sports Med, 2020, 48(8): 1857-1864.
[9] Wong I, John R, Ma J, et al. Arthroscopic anatomic glenoid reconstruction using distal tibial allograft for recurrent anterior shoulder instability: clinical and radiographic outcomes[J]. Am J Sports Med, 2020, 48(13): 3316-3321.
[10] Gilat R, Haunschild ED, Lavoie-Gagne OZ, et al. Outcomes of the latarjet procedure versus free bone block procedures for anterior shoulder instability: a systematic review and meta-analysis[J]. Am J Sports Med, 2021, 49(3): 805-816.
[11] Maio M, Sarmento M, Moura N, et al. How to measure a Hill-Sachs lesion: a systematic review[J]. EFORT Open Rev, 2019, 4(4): 151- 157.
[12] Schneider AK, Hoy GA, Ek ET, et al. Interobserver and intraobserver variability of glenoid track measurements[J]. J Shoulder Elbow Surg, 2017, 26(4): 573-579.
[13] Burkhart SS, De Beer JF. Traumatic glenohumeral bone defects and their relationship to failure of arthroscopic Bankart repairs: significance of the inverted-pear glenoid and the humeral engaging Hill-Sachs lesion[J]. Arthroscopy, 2000, 16(7): 677-694.
[14] Lee YJ, Kim C, Kim SJ, et al. Does an “off-trac” Hill-Sachs lesion that is misclassified as “non-engaging” affect outcomes from bankart repair alone compared with bankart repair combined with remplissage?[J]. Arthroscopy, 2021, 37(2): 450-456.
[15] Gowd AK, Liu JN, Cabarcas BC, et al. Management of recurrent anterior shoulder instability with bipolar bone loss: a systematic review to assess critical bone loss amounts[J]. Am J Sports Med, 2019, 47(10): 2484-2493.
[16] Rowe CR, Zarins B, Ciullo JV. Recurrent anterior dislocation of the shoulder after surgical repair. Apparent causes of failure and treatment[J]. J Bone Joint Surg Am, 1984, 66(2): 159-168.
[17] Peebles LA, Golijanin P, Peebles AM, et al. Glenoid bone loss directly affects Hill-Sachs morphology: an advanced 3-dimensional analysis[J]. Am J Sports Med, 2022, 50(9): 2469-2475.
[18] Yamamoto N, Itoi E, Abe H, et al. Contact between the glenoid and the humeral head in abduction, external rotation, and horizontal extension: a new concept of glenoid track[J]. J Shoulder Elbow Surg, 2007, 16(5): 649-656.
[19] Curtis AS, Burbank KM, Tierney JJ, et al. The insertional footprint of the rotator cuff: an anatomic study[J]. Arthroscopy, 2006, 22(6): 609.e1.
[20] Omori Y, Yamamoto N, Koishi H, et al. Measurement of the glenoid track in vivo as investigated by 3-dimensional motion analysis using open MRI[J]. Am J Sports Med, 2014, 42(6): 1290-1295.
[21] Li RT, Kane G, Drummond M, et al. On-track lesions with a small distance to dislocation are associated with failure after arthroscopic anterior shoulder stabilization[J]. J Bone Joint Surg Am, 2021, 103(11): 961-967.
[22] Chen KH, Yang TC, Chiang ER, et al. The Hill-Sachs interval to glenoid track width ratio is comparable to the instability severity index score for predicting risk of recurrent instability after arthroscopic Bankart repair[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(1): 250-256.
[23] Stefaniak J, KubickA AM, Wawrzyniak A, et al. Reliability of humeral head measurements performed using two- and threedimensional computed tomography in patients with shoulder instability[J]. Int Orthop, 2020, 44(10): 2049-2056.
[24] Vopat ML, Peebles LA, Mcbride T, et al. Accuracy and reliability of imaging modalities for the diagnosis and quantification of Hill-Sachs lesions: a systematic review[J]. Arthroscopy, 2021, 37(1): 391-401.
[25] Mulleneers LIC, Van Rompaey H, Haloui B, et al. Determining on-/off-track lesions in glenohumeral dislocation using multiplanar reconstruction computed tomography is easier and more reproducible than using 3-dimensional computed tomography[J]. Am J Sports Med, 2021, 49(1): 137-145.
[26] Funakoshi T, Hartzler RU, Stewien E, et al. Hill-Sachs lesion classification by the glenoid track paradigm in shoulder instability: poor agreement between 3-dimensional computed tomographic and arthroscopic methods[J]. Arthroscopy, 2019, 35(6): 1743-1749.
[27] Di Giacomo G, Peebles LA, Pugliese M, et al. Glenoid track instability management score: radiographic modification of the instability severity index score[J]. Arthroscopy, 2020, 36(1): 56-67.
[28] Yamamoto N, Shinagawa K, Hatta T, et al. Peripheral-track and central-track Hill-Sachs lesions: a new concept of assessing an ontrack lesion[J]. Am J Sports Med, 2020, 48(1): 33-38.
[29] Polio W, Brolin TJ. Remplissage for anterior shoulder instability: history, indications, and outcomes[J]. Orthop Clin North Am, 2022, 53(3): 327-338.
[30] Moroder P, Schulz E, Wierer G, et al. Neer Award 2019: Latarjet procedure vs. iliac crest bone graft transfer for treatment of anterior shoulder instability with glenoid bone loss: a prospective randomized trial[J]. J Shoulder Elbow Surg, 2019, 28(7): 1298-1307.
[31] Scanaliato JP, Dunn JC, Fitzpatrick KV, et al. Double-pulley remplissage in active-duty military population with off-track anterior shoulder instability results in improved outcomes and low recurrence at minimum 4-year follow-up[J]. Arthroscopy, 2022, 38(3): 743-749.
[32] Yang JS, Mehran N, Mazzocca AD, et al. Remplissage versus modified latarjet for off-track Hill-Sachs lesions with subcritical glenoid bone loss[J]. Am J Sports Med, 2018, 46(8): 1885-1891.
[33] Gouveia K, Abidi SK, Shamshoon S, et al. Arthroscopic bankart repair with remplissage in comparison to bone block augmentation for anterior shoulder instability with bipolar bone loss: a systematic review[J]. Arthroscopy, 2021, 37(2): 706-717.
[34] Calvo C, Calvo J, Rojas D, et al. Clinical relevance of persistent offtrack Hill-Sachs lesion after arthroscopic latarjet procedure[J]. Am J Sports Med, 2021, 49(8): 2006-2012.
[35] Plath JE, Henderson DJH, Coquay J, et al. Does the arthroscopic latarjet procedure effectively correct “off-track”Hill-Sachs lesions?[J]. Am J Sports Med, 2018, 46(1): 72-78.
[36] Callegari JJ, McGarry M, Crook L, et al. The addition of remplissage to free bone block restores translation and stiffness compared to bone block alone or latarjet in a bipolar bone loss model[J]. Arthroscopy, 2022, [Epub ahead of print].
[37] 代飞, 杨金松, 张清, 等. 三维CT 测量肩关节复发前脱位肩胛盂 轨迹的可靠性研究[J]. 中国骨伤, 2021, 34(6): 492-496.
[38] Mochizuki T, Sugaya H, Uomizu M, et al. Humeral insertion of the supraspinatus and infraspinatus. New anatomical findings regarding the footprint of the rotator cuff[J]. J Bone Joint Surg Am, 2008, 90(5): 962-969.
[39] Chalmers PN, Christensen G, O'Neill D, et al. Does bone loss imaging modality, measurement methodology, and interobserver reliability alter treatment in glenohumeral instability?[J]. Arthroscopy, 2020, 36(1): 12-19.
[40] Kawakami J, Yamamoto N, Etoh T, et al. In vivo glenoid track width can be better predicted with the use of shoulder horizontal extension angle[J]. Am J Sports Med, 2019, 47(4): 922-927.
[41] Yamamoto N, Kawakami J, Nagamoto H, et al. The relationship between the glenoid track and the range of shoulder motion: a cadaver study[J]. Orthop Traumatol Surg Res, 2018, 104(6): 793-796.
[42] Montgomery C, O'Briain DE, Hurley ET, et al. Video analysis of shoulder dislocations in rugby: insights into the dislocating mechanisms[J]. Am J Sports Med, 2019, 47(14): 3469-3475.
[43] Ernstbrunner L, Werthel JD, Hatta T, et al. Biomechanical analysis of the effect of congruence, depth and radius on the stability ratio of a simplistic ‘ball-and-socket’ joint model[J]. Bone Joint Res, 2016, 5(10): 453-460.
[44] Nicolozakes CP, Ludvig D, Baillargeon EM, et al. Muscle contraction has a reduced effect on increasing glenohumeral stability in the apprehension position[J]. Med Sci Sports Exerc, 2021, 53(11): 2354- 2362.
[45] Inoue J, Takenaga T, Tsuchiya A, et al. Ultrasound assessment of anterior humeral head translation in patients with anterior shoulder instability: correlation with demographic, radiographic, and clinical data[J]. Orthop J Sports Med, 2022, 10(7): 23259671221101924.
[46] Lim JR, Lee HM, Yoon TH, et al. Association between excessive joint laxity and a wider Hill-Sachs lesion in anterior shoulder instability[J]. Am J Sports Med, 2021, 49(14): 3981-3987.
[47] Itoi E. ‘On-track' and ‘off-track' shoulder lesions[J]. EFORT Open Rev, 2017, 2(8): 343-351.
[48] Moroder P, Damm P, Wierer G, et al. Challenging the current concept of critical glenoid bone loss in shoulder instability: does the size measurement really tell it all?[J]. Am J Sports Med, 2019, 47(3): 688- 694.
[49] Wermers J, Schliemann B, Raschke MJ, et al. Glenoid concavity has a higher impact on shoulder stability than the size of a bony defect[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(8): 2631-2639.
[50] Wermers J, Raschke MJ, Wilken M, et al. The anatomy of glenoid concavity-bony and osteochondral assessment of a stability-related parameter[J]. J Clin Med, 2021, 10(19): 4316.
[51] Wermers J, Schliemann B, RaschkE MJ, et al. The glenolabral articular disruption lesion is a biomechanical risk factor for recurrent shoulder instability[J]. Arthrosc Sports Med Rehabil, 2021, 3(6): e1803-e1810.
[52] Bhatia DN, Kandhari V. How does anterior glenoid bone loss affect shoulder stability? A cadaveric analysis of glenoid concavity and bony shoulder stability ratio[J]. J Shoulder Elbow Surg, 2022, 31(3): 553-560.
[53] Yates JB, Choudhry MN, Waseem M. Managing bony defects of the shoulder joint that occur in association with dislocation[J]. Open Orthop J, 2017, 11: 1245-1257.
[54] Cho SH, Cho NS, Rhee YG. Preoperative analysis of the Hill-Sachs lesion in anterior shoulder instability: how to predict engagement of the lesion[J]. Am J Sports Med, 2011, 39(11): 2389-2395.
[55] Di Giacomo G, Golijanin P, Sanchez G, et al. Radiographic analysis of the hill-sachs lesion in anteroinferior shoulder instability after firsttime dislocations[J]. Arthroscopy, 2016, 32(8): 1509-1514

备注/Memo

备注/Memo:
通信作者:赵金忠 E-mail: jzzhao@sjtu.edu.cn
更新日期/Last Update: 2022-10-01