索引超出了数组界限。
[1] Ferreiro A, Crook N, Gasparrini AJ,et al. Multiscale evolutionary dynamics of host-associated microbiomes[J]. Cell, 2018, 172(6): 1216-1227.
[2] Umbrello G, Esposito S. Microbiota and neurologic diseases: potential effects of probiotics[J]. J Transl Med, 2016, 14(1): 298.
[3] Fong FLY, Kirjavainen PV, El-Nezami H. Immunomodulation of Lactobacillus rhamnosus GG(LGG)-derived soluble factors on antigen-presenting cells of healthy blood donors[J]. Sci Rep, 2016, 6: 22845.
[4] Yang GY, Yu J, Su JH, et al. Oral administration of Lactobacillus rhamnosus GG ameliorates salmonella infantis-induced inflammation in a pig model via activation of the IL-22bp/IL-22/stat3 pathway[J]. Front Cell Infect Microbiol, 2017, 7: 323.
[5] Suez J, Zmora N, Segal E, et al. The pros, cons, and many unknowns of probiotics[J]. Nat Med, 2019, 25(5): 716-729.
[6] Venkatesh K, Ghosh SK, Mullick M, et al. Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications[J]. Cell Tissue Res, 2019, 377(2): 125-151.
[7] Chan BCF, Craven BC, Furlan JC. A scoping review on health economics in neurosurgery for acute spine trauma[J]. Neurosurg Focus, 2018, 44(5): E15.
[8] Li B, Qi J, Cheng P, et al. Traumatic spinal cord injury mortality from 2006 to 2016 in China[J]. J Spinal Cord Med, 2020, 16: 1-6.
[9] Kigerl KA, Hall JC, Wang L, et al. Gut dysbiosis impairs recovery after spinal cord injury[J]. J Exp Med, 2016, 213(12): 2603-2620.
[10] Winek K, Engel O, Koduah P, et al. Depletion of cultivatable gut microbiota by broad-spectrum antibiotic pretreatment worsens outcome after murine stroke[J]. Stroke, 2016, 47(5): 1354-1363.
[11] Benakis C, Brea D, Caballero S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells[J]. Nat Med, 2016, 22(5): 516-523.
[12] Boekamp JR, Overholser JC, Schubert DS. Depression following a spinal cord injury[J]. Int J Psychiatry Med, 1996, 26(3): 329-349.
[13] Evans CT, Rogers TJ, Chin A, et al. Antibiotic prescribing trends in the emergency department for veterans with spinal cord injury and disorder 2002-2007[J]. J Spinal Cord Med, 2013, 36(5): 492-498.
[14] Sarkar A, Lehto SM, Harty S, et al. Psychobiotics and the manipulation of bacteria-gut-brain signals[J]. Trends Neurosci, 2016, 39(11): 763-781.
[15] Vergnolle N, Cirillo C. Neurons and glia in the enteric nervous system and epithelial barrier function[J]. Physiology(Bethesda), 2018, 33(4): 269-280.
[16] Osadchiy V, Martin CR, Mayer EA. The gut-brain axis and the microbiome: mechanisms and clinical implications[J]. Clin Gastroenterol Hepatol, 2019, 17(2): 322-332.
[17] Ogbonnaya ES, Clarke G, Shanahan F, et al. Adult hippocampal neurogenesis is regulated by the microbiome[J]. Biol Psychiatry, 2015, 78(4): e7-e9.
[18] Hoban AE, Stilling RM, Ryan FJ, et al. Regulation of prefrontal cortex myelination by the microbiota[J]. Transl Psychiatry, 2016, 6(4): e774.
[19] Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice[J]. Sci Transl Med, 2014, 6(263): 263ra158.
[20] Giannoni P, Claeysen S, Noe F, et al. Peripheral routes to neurodegeneration: passing through the blood-brain barrier[J]. Front Aging Neurosci, 2020, 12: 3.
[21] Sun MF, Zhu YL, Zhou ZL, et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson's disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway[J]. Brain Behav Immun, 2018, 70: 48-60.
[22] Chu F, Shi M, Lang Y, et al. Gut microbiota in multiple sclerosis and experimental autoimmune encephalomyelitis: current applications and future perspectives[J]. Mediators Inflamm, 2018, 2018: 8168717.
[23] Cristiano C, Volpicelli F, Lippiello P, et al. Neutralization of IL-17 rescues amyloid-β-induced neuroinflammation and memory impairment[J]. Br J Pharmacol, 2019, 176(18): 3544-3557.
[24] Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly[J]. Nature, 2012, 488(7410): 178-184.
[25] Ostojic SM. Inadequate production of H2 by gut microbiota and Parkinson disease[J]. Trends Endocrinol Metab, 2018, 29(5): 286-288.
[26] Scheperjans F, Aho V, Pereira PA, et al. Gut microbiota are related to Parkinson's disease and clinical phenotype[J]. Mov Disord, 2015, 30(3): 350-358.
[27] Fu Y, Ito M, Fujita Y, et al. Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson's disease[J]. Neurosci Lett, 2009, 453(2): 81-85.
[28] Wang Y, Sherchan P, Huang L, et al. Multiple mechanisms underlying neuroprotection by secretory phospholipase A2 preconditioning in a surgically induced brain injury rat model[J]. Exp Neurol, 2018, 300: 30-40.
[29] Danehower S. Targeting gut dysbiosis as a means to enhance recovery from surgical brain injury[J]. Surg Neurol Int, 2021, 12: 210.
[30] Oleskin AV, Shenderov BA. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota[J]. Microb Ecol Health Dis, 2016, 27: 30971.
[31] Tse JKY. Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders[J]. ACS Chem Neurosci, 2017, 8(7): 1438-1447.
[32] Sandhu KV, Sherwin E, Schellekens H, et al. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry[J]. Transl Res, 2017, 179: 223-244.
[33] Noble EE, Hsu TM, Kanoski SE. Gut to brain dysbiosis: mechanisms linking western diet consumption, the microbiome, and cognitive impairment[J]. Front Behav Neurosci, 2017, 11: 9.
[34] Burhani MD, Rasenick MM. Fish oil and depression: the skinny on fats[J]. J Integr Neurosci, 2017, 16(s1): S115-S124.
[35] Corpas FJ, Barroso JB. Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants[J]. New Phytol, 2013, 199(3): 633-635.
[36] Burokas A, Arboleya S, Moloney RD, et al. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice[J]. Biol Psychiatry, 2017, 82(7): 472-487.
[37] Yang XD, Wang LK, Wu HY, et al. Effects of prebiotic galacto-oligosaccharide on postoperative cognitive dysfunction and neuroinflammation through targeting of the gut-brain axis[J]. BMC Anesthesiol, 2018, 18(1): 177.
[38] Kigerl KA, Hall JC, Wang L, et al. Gut dysbiosis impairs recovery after spinal cord injury[J]. J Exp Med, 2016, 213(12): 2603-2620.
[39] Tillisch K, Labus J, Kilpatrick L, et al. Consumption of fermented milk product with probiotic modulates brain activity[J]. Gastroenterology, 2013, 144(7): 1394-1401.
[40] Takada M, Nishida K, Kataoka-Kato A, et al. Probiotic Lactobacillus casei strain Shirota relieves stress-associated symptoms by modulating the gut-brain interaction in human and animal models[J]. Neurogastroenterol Motil, 2016, 28(7): 1027-1036.
[41] Kelly JR, Allen AP, Temko A, et al. Lost in translation? The potential psychobiotic Lactobacillus rhamnosus(JB-1)fails to modulate stress or cognitive performance in healthy male subjects[J]. Brain Behav Immun, 2017, 61: 50-59.
[42] Falcão de Arruda IS, de Aguilar-Nascimento JE. Benefits of early enteral nutrition with glutamine and probiotics in brain injury patients[J]. Clin Sci(Lond), 2004, 106(3): 287-292.
[43] Sofi F, Abbate R, Gensini GF, et al. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis[J]. Am J Clin Nutr, 2010, 92(5): 1189-1196.