索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]石强,徐建广.间充质干细胞来源外泌体在脊髓损伤治疗中的研究进展[J].国际骨科学杂志,2021,05:290-294.
点击复制

间充质干细胞来源外泌体在脊髓损伤治疗中的研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2021年05期
页码:
290-294
栏目:
综述
出版日期:
2021-10-01

文章信息/Info

Title:
-
作者:
石强徐建广
200233, 上海交通大学附属第六人民医院骨科
Author(s):
-
关键词:
脊髓损伤 间充质干细胞 外泌体 微RNA
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2021.05.007
文献标识码:
-
摘要:
脊髓损伤是严重创伤事件,可对患者的感觉、运动或自主神经功能产生严重影响。由于脊髓损伤的病理过程复杂,目前尚无成功的临床治疗策略。外泌体被认为是细胞与组织之间通过转运蛋白质、脂质和核酸进行交流的关键载体,间充质干细胞来源外泌体在脊髓损伤治疗的研究中已成为热点。该文对间充质干细胞来源外泌体在脊髓损伤治疗中的潜在作用机制以及微RNA在其中的作用进行综述。
Abstract:
-

参考文献/References

[1] Mathieu M, Martin-Jaular L, Lavieu GA. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17.
[2] Wang X, Botchway B, Zhang Y, et al. Combinational treatment of bioscaffolds and extracellular vesicles in spinal cord injury[J]. Front Mol Neurosci, 2019, 12: 81.
[3] Romanelli P, Bieler L, Scharler C, et al. Extracellular vesicles can deliver anti-inflammatory and anti-scarring activities of mesenchymal stromal cells after spinal cord injury[J]. Front Neurol, 2019, 10: 1225.
[4] Irrera N, Russo M, Pallio G, et al. The role of NLRP3 inflammasome in the pathogenesis of traumatic brain injury[J]. Int J Mol Sci, 2020, 21(17): 6204.
[5] Jiang W, Li M, He F, et al. Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice[J]. J Neuroinflammation, 2017, 14(1): 207.
[6] Zhang M, Wang L, Huang S, et al. MicroRNA-223 targets NLRP3 to relieve inflammation and alleviate spinal cord injury[J]. Life Sci, 2020, 254: 117796.
[7] Na L, Wang S, Liu T, et al. Ultrashort wave combined with human umbilical cord mesenchymal stem cell(HUC-MSC)transplantation inhibits NLRP3 inflammasome and improves spinal cord injury via Mk2/TTP signalling pathway[J]. Biomed Res Int, 2020, 2020: 3021750.
[8] Huang JH, Fu CH, Xu Y, et al. Extracellular vesicles derived from epidural fat-mesenchymal stem cells attenuate NLRP3 inflammasome activation and improve functional recovery after spinal cord injury[J]. Neurochem Res, 2020, 45(4): 760-771.
[9] Sun G, Li G, Li D, et al. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation[J]. Mater Sci Eng C Mater Biol Appl, 2018, 89: 194-204.
[10] Wang LX, Zhang SX, Wu HJ, et al. M2b macrophage polarization and its roles in diseases[J]. J Leukoc Biol, 2019, 106(2): 345-358.
[11] Fang H, Li HF, Pan Q, et al. MiR-132-3p modulates MEKK3-dependent NF-κB and p38/JNK signaling pathways to alleviate spinal cord ischemia-reperfusion injury by hindering M1 polarization of macrophages[J]. Front Cell Dev Biol, 2021, 9: 570451.
[12] 徐保平, 姚敏, 王晓涛, 等. 巨噬细胞极化在脊髓损伤中的作用机制[J]. 中国骨伤, 2018, 31(1): 88-92.
[13] Orr MB, Gensel JC. Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses[J]. Neurotherapeutics, 2018, 15(3): 541-553.
[14] Wang X, Cao K, Sun X, et al. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris[J]. Glia, 2015, 63(4): 635-651.
[15] Lankford KL, Arroyo EJ, Nazimek KA, et al. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord[J]. PLoS One, 2018, 13(1): e0190358.
[16] Anderson MA, Burda JE, Ren Y, et al. Astrocyte scar formation aids central nervous system axon regeneration[J]. Nature, 2016, 532(7598): 195-200.
[17] Liddelow SA, Guttenplan KA, Larke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638): 481-487.
[18] Liu W, Wang Y, Gong F, et al. Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes[J]. J Neurotrauma, 2019, 36(3): 469-484.
[19] Lian H, Yang L, Cole A, et al. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease[J]. Neuron, 2015, 85(1): 101-115.
[20] Wang L, Pei S, Han L, et al. Mesenchymal stem cell-derived exosomes reduce A1 astrocytes via downregulation of phosphorylated NFκB P65 subunit in spinal cord injury[J]. Cell Physiol Biochem, 2018, 50(4): 1535-1559.
[21] Bartanusz V, Jezova D, Alajajian B, et al. The blood-spinal cord barrier: morphology and clinical implications[J]. Ann Neurol, 2011, 70(2): 194-206.
[22] Jo DH, Kim JH, Heo JI, et al. Interaction between pericytes and endothelial cells leads to formation of tight junction in hyaloid vessels[J]. Mol Cells, 2013, 36(5): 465-471.
[23] Lu Y, Zhou Y, Zhang R, et al. Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier[J]. Front Neurosci, 2019, 13: 209.
[24] Yuan X, Wu Q, Wang P, et al. Exosomes derived from pericytes improve microcirculation and protect blood-spinal cord barrier after spinal cord injury in mice[J]. Front Neurosci, 2019, 13: 319.
[25] Ding SQ, Chen J, Wang SN, et al. Identification of serum exosomal microRNAs in acute spinal cord injured rats[J]. Exp Biol Med(Maywood), 2019, 244(14): 1149-1161.
[26] Chen L, Lu FB, Chen DZ, et al. BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis[J]. Mol Immunol, 2018, 93: 38-46.
[27] Zhou X, Chu X, Yuan H, et al. Mesenchymal stem cell derived EVs mediate neuroprotection after spinal cord injury in rats via the microRNA-21-5p/FasL gene axis[J]. Biomed Pharmacother, 2019, 115: 108818.
[28] Xu G, Ao R, Zhi Z, et al. miR-21 and miR-19b delivered by hMSC-derived EVs regulate the apoptosis and differentiation of neurons in patients with spinal cord injury[J]. J Cell Physiol, 2019, 234(7): 10205-10217.
[29] Kang J, Li Z, Zhi Z, et al. MiR-21 derived from the exosomes of MSCs regulates the death and differentiation of neurons in patients with spinal cord injury[J]. Gene Ther, 2019, 26(12): 491-503.
[30] Ji W, Jiang W, Li M, et al. miR-21 deficiency contributes to the impaired protective effects of obese rat mesenchymal stem cell-derived exosomes against spinal cord injury[J]. Biochimie, 2019, 167: 171-178.
[31] Xia C, Cai Y, Lin Y, et al. MiR-133b-5p regulates the expression of the heat shock protein 70 during rat neuronal cell apoptosis induced by the gp120 V3 loop peptide[J]. J Med Virol, 2016, 88(3): 437-447.
[32] Madaro L, Passafaro M, Sala D, et al. Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis[J]. Nat Cell Biol, 2018, 20(8): 917-927.
[33] Zheng XQ, Huang JF, Lin JL, et al. Controlled release of baricitinib from a thermos-responsive hydrogel system inhibits inflammation by suppressing JAK2/STAT3 pathway in acute spinal cord injury[J]. Colloids Surf B Biointerfaces, 2021, 199: 111532.
[34] Wu X, Walker CL, Lu Q, et al. RhoA/Rho kinase mediates neuronal death through regulating cPLA(2)activation[J]. Mol Neurobiol, 2017, 54(9): 6885-6895.
[35] Ren ZW, Zhou JG, Xiong ZK, et al. Effect of exosomes derived from miR-133b-modified ADSCs on the recovery of neurological function after SCI[J]. Eur Rev Med Pharmacol Sci, 2019, 23(1): 52-60.
[36] Qiu J, Cafferty WB, Mcmahon SB, et al. Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation[J]. J Neurosci, 2005, 25(7): 1645-1653.
[37] Lu XC, Jy Z, Tang LJ, et al. MiR-133b promotes neurite outgrowth by targeting RhoA expression[J]. Cell Physiol Biochem, 2015, 35(1): 246-258.
[38] Li D, Zhang P, Yao XY, et al. Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury[J]. Front Neurosci, 2018, 12: 845.
[39] Hu JZ, Zeng L, Huang JH, et al. miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats[J]. Brain Res, 2015, 1608: 191-202.
[40] Huang JH, Xu Y, Yin XM, et al. Exosomes derived from miR-126-modified MSCs promote angiogenesis and neurogenesis and attenuate apoptosis after spinal cord injury in rats[J]. Neuroscience, 2020, 424: 133-145.
[41] Yuan B, Pan S, Dong YQ, et al. Effect of exosomes derived from mir-126-modified mesenchymal stem cells on the repair process of spinal cord injury in rats[J]. Eur Rev Med Pharmacol Sci, 2020, 24(2): 483-490.
[42] Yu T, Zhao C, Hou S, et al. Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats[J]. Braz J Med Biol Res, 2019, 52(12): e8735.
[43] Zhao L, Jiang X, Shi J, et al. Exosomes derived from bone marrow mesenchymal stem cells overexpressing microRNA-25 protect spinal cords against transient ischemia[J]. J Thorac Cardiovasc Surg, 2019, 157(2): 508-517.
[44] Li C, Li X, Zhao B, et al. Exosomes derived from miR-544-modified mesenchymal stem cells promote recovery after spinal cord injury[J]. Arch Physiol Biochem, 2020, 126(4): 369-375.
[45] Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization[J]. J Neuroinflammation, 2020, 17(1): 47.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金(81672217) 通信作者: 徐建广 E-mail: jianguangxu2004@aliyun.com
更新日期/Last Update: 2021-10-01