索引超出了数组界限。
[1] Dikmen S, Machamer J, Manley GT, et al. Functional status examination versus glasgow outcome scale extended as outcome measures in traumatic brain injuries: how do they compare?[J]. J Neurotrauma, 2019, 36(16): 2423-2429.
[2] Locher RJ, Lunnemann T, Garbe A, et al. Traumatic brain injury and bone healing: radiographic and biomechanical analyses of bone formation and stability in a combined murine trauma model[J]. J Musculoskelet Neuronal Interact, 2015, 15(4): 309-315.
[3] Hofman M, Andruszkow H, Heyer FL, et al. Risk factors of non-union in intramedullary stabilized diaphyseal long bone fractures: identifying the role of fracture stabilization strategies and concomitant injuries[J]. Eur J Trauma Emerg Surg, 2020, [Epub ahead of print].
[4] Morioka K, Marmor Y, Sacramento JA, et al. Differential fracture response to traumatic brain injury suggests dominance of neuroinflammatory response in polytrauma[J]. Sci Reports, 2019, 9(1): 12199.
[5] Zhang R, Liang Y, Wei S. M2 macrophages are closely associated with accelerated clavicle fracture healing in patients with traumatic brain injury: a retrospective cohort study[J]. J Orthop Surg Res, 2018, 13(1): 213.
[6] Deng QJ, Xu XF, Ren J. Effects of SDF-1/CXCR4 on the repair of traumatic brain injury in rats by mediating bone marrow derived mesenchymal stem cells[J]. Cell Mol Neurobiol, 2018, 38(2): 467-477.
[7] Brady RD, Zhao MZ, Wong KR, et al. A novel rat model of heterotopic ossification after polytrauma with traumatic brain injury[J]. Bone, 2020, 133: 115263.
[8] Lazard ZW, Olmsted-Davis EA, Salisbury EA, et al. Osteoblasts have a neural origin in heterotopic ossification[J]. Clin Orthop Relat Res, 2015, 473(9): 2790-2806.
[9] Sullivan MP, Torres SJ, Mehta S, et al. Heterotopic ossification after central nervous system trauma: a current review[J]. Bone Joint Res, 2013, 2(3): 51-57.
[10] 马维, 牛彦平, 张华. 合并脑损伤大鼠骨折愈合过程中转化生长因子β1血清含量及在骨折位点的表达[J]. 中国临床康复, 2006, 10(42): 88-91.
[11] Scarfì S. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair[J]. World J Stem Cells, 2016, 8(1): 1-12.
[12] Wang Y, He T, Liu J, et al. Synergistic effects of overexpression of BMP-2 and TGF-β3 on osteogenic differentiation of bone marrow mesenchymal stem cells[J]. Mol Med Rep, 2016, 14(6): 5514-5520.
[13] Bucelli RC, Gonsiorek EA, Kim WY, et al. Statins decrease expression of the proinflammatory neuropeptides calcitonin gene-related peptide and substance P in sensory neurons[J]. J Pharmacol Exp Ther, 2008, 324(3): 1172-1180.
[14] Salisbury E, Rodenberg E, Sonnet C, et al. Sensory nerve induced inflammation contributes to heterotopic ossification[J]. J Cell Biochem, 2011, 112(10): 2748-2758.
[15] Khan SN, Duraine G, Virk SS, et al. The temporal role of leptin within fracture healing and the effect of local application of recombinant leptin on fracture healing[J]. J Orthop Trauma, 2013, 27(11): 656-662.
[16] Graef F, Seemann R, Garbe A, et al. Impaired fracture healing with high non-union rates remains irreversible after traumatic brain injury in leptin-deficient mice[J]. J Musculoskelet Neuronal Interact, 2017, 17(2): 78-85.
[17] Seemann R, Graef F, Garbe A, et al. Leptin-deficiency eradicates the positive effect of traumatic brain injury on bone healing: histological analyses in a combined trauma mouse model[J]. J Musculoskelet Neuronal Interact, 2018, 18(1): 32-41.
[18] Garbe A, Graef F, Appelt J, et al. Leptin mediated pathways stabilize posttraumatic insulin and osteocalcin patterns after long bone fracture and concomitant traumatic brain injury and thus influence fracture healing in a combined murine trauma model[J]. Int J Mol Sci, 2020, 21(23): 9144.
[19] Wang L, Yuan JS, Zhang HX, et al. Effect of leptin on bone metabolism in rat model of traumatic brain injury and femoral fracture[J]. Chin J Traumatol, 2011, 14(1): 7-13.
[20] Marseglia L, D'angelo G, Manti S, et al. Melatonin secretion is increased in children with severe traumatic brain injury[J]. Int J Mol Sci, 2017, 18(5): 1053.
[21] Taylor AC, Horvat-Gordon M, Moore A, et al. The effects of melatonin on the physical properties of bones and egg shells in the laying hen[J]. PLoS One, 2013, 8(2): e55663.
[22] Cardinali DP, Ladizesky MG, Boggio V, et al. Melatonin effects on bone: experimental facts and clinical perspectives[J]. J Pineal Res, 2003, 34(2): 81-87.
[23] Hari Kumar KV, Swamy MN, Khan MA. Prevalence of hypothalamo pituitary dysfunction in patients of traumatic brain injury[J]. Indian J Endocrinol Metab, 2016, 20(6): 772-778.
[24] Kopczak A, Kilimann I, von Rosen F, et al. Screening for hypopituitarism in 509 patients with traumatic brain injury or subarachnoid hemorrhage[J]. J Neurotrauma, 2014, 31(1): 99-107.
[25] Cuesta M, Hannon MJ, Crowley RK, et al. Symptoms of gonadal dysfunction are more predictive of hypopituitarism than nonspecific symptoms in screening for pituitary dysfunction following moderate or severe traumatic brain injury[J]. Clin Endocrinol(Oxf), 2016, 84(1): 92-98.
[26] Zheng P, He B, Tong W. Dynamic pituitary hormones change after traumatic brain injury[J]. Neurol India, 2014, 62(3): 280-284.
[27] Mormando M, Chiloiro S, Bianchi A, et al. Growth hormone receptor isoforms and fracture risk in adult-onset growth hormone-deficient patients[J]. Clin Endocrinol(Oxf), 2016, 85(5): 717-724.
[28] Dumic-Cule I, Draca N, Luetic AT, et al. TSH prevents bone resorption and with calcitriol synergistically stimulates bone formation in rats with low levels of calciotropic hormones[J]. Horm Metab Res, 2014, 46(5): 305-312.
[29] Davis EL, Davis AR, Gugala Z, et al. Is heterotopic ossification getting nervous?: The role of the peripheral nervous system in heterotopic ossification[J]. Bone, 2018, 109: 22-27.
[30] Chen S, Liu J, Cai J, et al. Results and outcome predictors after open release of complete ankylosis of the elbow caused by heterotopic ossification[J]. Int Orthop, 2017, 41(8): 1627-1632.
[31] Song Y, Han GX, Chen L, et al. The role of the hippocampus and the function of calcitonin gene-related peptide in the mechanism of traumatic brain injury accelerating fracture-healing[J]. Eur Rev Med Pharmacol Sci, 2017, 21(7): 1522-1531.
[32] Lerner UH, Persson E. Osteotropic effects by the neuropeptides calcitonin gene-related peptide, substance P and vasoactive intestinal peptide[J]. J Musculoskelet Neuronal Interact, 2008, 8(2): 154-165.
[33] Zhang Q, Wu B, Yuan Y, et al. CGRP-modulated M2 macrophages regulate osteogenesis of MC3T3-E1 via Yap1[J]. Arch Biochem Biophys, 2021, 697: 108697.
[34] van Kampen PJ, Martina JD, Vos PE, et al. Potential risk factors for developing heterotopic ossification in patients with severe traumatic brain injury[J]. J Head Trauma Rehabil, 2011, 26(5): 384-391.
[35] Sakellariou VI, Grigoriou E, Mavrogenis AF, et al. Heterotopic ossification following traumatic brain injury and spinal cord injury: insight into the etiology and pathophysiology[J]. J Musculoskelet Neuronal Interact, 2012, 12(4): 230-240.
[36] Drouin G, Couture V, Lauzon MA, et al. Muscle injury-induced hypoxia alters the proliferation and differentiation potentials of muscle resident stromal cells[J]. Skelet Muscle, 2019, 9(1): 18.
[37] Anthonissen J, Ossendorf C, Hock JL, et al. The role of muscular trauma in the development of heterotopic ossification after hip surgery: an animal-model study in rats[J]. Injury, 2016, 47(3): 613-616.
[38] Zhang R, Liang Y, Wei SX. The expressions of NGF and VEGF in the fracture tissues are closely associated with accelerated clavicle fracture healing in patients with traumatic brain injury[J]. Ther Clin Risk Manag, 2018, 14: 2315-2322.
[39] Merrill MJ, Oldfield EH. A reassessment of vascular endothelial growth factor in central nervous system pathology[J]. J Neurosurg, 2005, 103(5): 853-868.
[40] Cheng VK, Au PC, Tan KC, et al. MicroRNA and human bone health[J]. JBMR Plus, 2019, 3(1): 2-13.
[41] Jia B, Zhang Z, Qiu X, et al. Analysis of the miRNA and mRNA involved in osteogenesis of adipose-derived mesenchymal stem cells[J]. Exp Ther Med, 2018, 16(2): 1111-1120.
[42] Di Pietro V, Ragusa M, Davies D, et al. MicroRNAs as novel biomarkers for the diagnosis and prognosis of mild and severe traumatic brain injury[J]. J Neurotrauma, 2017, 34(11): 1948-1956.
[43] Yin ZY, Han ZL, Hu TP, et al. Neuron-derived exosomes with high miR-21-5p expression promoted polarization of M1 microglia in culture[J]. Brain Behav Immun, 2020, 83: 270-282.
[44] Xiong YY, Tang YJ, Fan F, et al. Exosomal hsa-miR-21-5p derived from growth hormone-secreting pituitary adenoma promotes abnormal bone formation in acromegaly[J]. Transl Res, 2020, 215: 1-16.
[45] Li D, Huang S, Zhu JL, et al. Exosomes from MiR-21-5p-increased neurons play a role in neuroprotection by suppressing rab11a-mediated neuronal autophagy in vitro after traumatic brain injury[J]. Med Sci Monit, 2019, 25: 1871-1885.
[46] Ge XT, Li WZ, Huang S, et al. Increased miR-21-3p in injured brain microvascular endothelial cells after traumatic brain injury aggravates blood-brain barrier damage by promoting cellular apoptosis and inflammation through targeting MAT2B[J]. J Neurotrauma, 2019, 36(8): 1291-1305.
[47] Xiong Y, Cao FQ, Hu LC, et al. miRNA-26a-5p accelerates healing via downregulation of PTEN in fracture patients with traumatic brain injury[J]. Mol Ther Nucleic Acids, 2019, 17: 223-234.
[48] Sun Y, Xiong Y, Yan CC, et al. Downregulation of microRNA-16-5p accelerates fracture healing by promoting proliferation and inhibiting apoptosis of osteoblasts in patients with traumatic brain injury[J]. Am J Transl Res, 2019, 11(8): 4746-4760.
[49] Brady RD, Shultz SR, Sun M, et al. Experimental traumatic brain injury induces bone loss in rats[J]. J Neurotrauma, 2016, 33(23): 2154-2160.
[50] Smith E, Comiskey C, Carroll A. Prevalence of and risk factors for osteoporosis in adults with acquired brain injury[J]. Ir J Med Sci, 2016, 185(2): 473-781.
[51] Huang H, Cheng WX, Hu YP, et al. Relationship between heterotopic ossification and traumatic brain injury: why severe traumatic brain injury increases the risk of heterotopic ossification[J]. J Orthop Translat, 2018, 12: 16-25.