索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]赵宇昊,何易祥,高昭,等.肝素水凝胶在骨组织工程中的应用[J].国际骨科学杂志,2021,05:268-270.
点击复制

肝素水凝胶在骨组织工程中的应用(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2021年05期
页码:
268-270
栏目:
综述
出版日期:
2021-10-01

文章信息/Info

Title:
-
作者:
赵宇昊何易祥高昭赵海燕王文己
730000, 兰州大学第一临床医学院(赵宇昊、何易祥、高昭); 730000, 兰州大学第一医院骨科(赵海燕、王文己)
Author(s):
-
关键词:
肝素水凝胶 骨组织工程 应用
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2021.05.002
文献标识码:
-
摘要:
在骨组织工程研究中,骨细胞再生及干预调控对于疾病治疗具有重要临床意义。肝素水凝胶不仅组织相容性好,细胞毒性低,而且可诱导间充质干细胞分化修复骨缺损,并可作为细胞因子载体及诱导成软骨分化和控制药物释放,具有较好的生物学活性。该文就肝素水凝胶在骨组织工程中的应用进行综述。
Abstract:
-

参考文献/References

[1] Collins MT, Stratakis CA. Bone formation, growth, and repair[J]. Horm Metab Resh, 2016, 48(11): 687-688.
[2] Sakiyama-Elbert SE. Incorporation of heparin into biomaterials[J]. Acta Biomater, 2014, 10(4): 1581-1587.
[3] Jeon HJ, Yoon KA, An ES, et al. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells combined with cartilage acellular matrix mediated via bone morphogenic protein 6 in a rabbit model of articular cruciate ligament transection[J]. Stem Cell Rev Rep, 2020, 16(3): 596-611.
[4] Benoit DSW, Durney AR, Anseth KS. The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation[J]. Biomaterials, 2007, 28(1): 66-77.
[5] Choi JH, Choi OK, Lee J, et al. Evaluation of double network hydrogel of poloxamer-heparin/gellan gum for bone marrow stem cells delivery carrier[J]. Colloids Surf B Biointerfaces, 2019, 181: 879-889.
[6] Chen J, Chin A, Almarza AJ, et al. Hydrogel to guide chondrogenesis versus osteogenesis of mesenchymal stem cells for fabrication of cartilaginous tissues[J]. Biomed Mater, 2020, 15(4): 045006.
[7] Seto SP, Casas ME,Temenoff JS. Differentiation of mesenchymal stem cells in heparin-containing hydrogels via coculture with osteoblasts[J]. Cell Tissue Res, 2012, 347(3): 589-601.
[8] Kim M, Kim YH, Tae G. Human mesenchymal stem cell culture on heparin-based hydrogels and the modulation of interactions by gel elasticity and heparin amount[J]. Acta Biomater, 2013, 9(8): 7833-7844.
[9] Wei W, Ma Y, Yao X, et al. Advanced hydrogels for the repair of cartilage defects and regeneration[J]. Bioact Mater, 2020, 6(4): 998-1011.
[10] Moreira-Teixeira LS, Bijl S, Pully VV, et al. Self-attaching and cell-attracting in-situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair[J]. Biomaterials, 2012, 33(11): 3164-3174.
[11] Jin R, Moreira Teixeira LS, Dijkstra PJ, et al. Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels[J]. J Control Release, 2011, 152(1): 186-195.
[12] Kunisch E, Knauf AK, Hesse E, et al. StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer[J]. Biofabrication, 2018, 11(1): 015001.
[13] Park JS, Woo DG, Yang HN, et al. Transforming growth factor beta-3 bound with sulfate polysaccharide in synthetic extracellular matrix enhanced the biological activities for neocartilage formation in vivo[J]. J Biomed Mater Res A, 2009, 91(2): 408-415.
[14] Zhao YZ, Lv HF, Lu CT, et al. Evaluation of a novel thermosensitive heparin-poloxamer hydrogel for improving vascular anastomosis quality and safety in a rabbit model[J]. PLoS One, 2013, 8(8): e73178.
[15] Tae G, Scatena M, Stayton PS, et al. PEG-cross-linked heparin is an affinity hydrogel for sustained release of vascular endothelial growth factor[J]. J Biomater Sci Polym Ed, 2006, 17(1-2): 187-197.
[16] Krieger JR, Ogle ME, McFaline-Figueroa J, et al. Spatially localized recruitment of anti-inflammatory monocytes by SDF-1alpha-releasing hydrogels enhances microvascular network remodeling[J]. Biomaterials, 2016, 77: 280-290.
[17] McGonigle JS, Tae G, Stayton PS, et al. Heparin-regulated delivery of osteoprotegerin promotes vascularization of implanted hydrogels[J]. J Biomater Sci Polym Ed, 2008, 19(8): 1021-1034.
[18] Zieris A, Chwalek K, Prokoph S, et al. Dual independent delivery of pro-angiogenic growth factors from starPEG-heparin hydrogels[J]. J Control Release, 2011, 156(1): 28-36.
[19] Wu J, Zhu J, He C, et al. Comparative study of heparin-poloxamer hydrogel modified bFGF and aFGF for in vivo wound healing efficiency[J]. ACS Appl Mater Interfaces, 2016, 8(29): 18710-18721.
[20] Go DH, Joung YK, Lee SY, et al. Tetronic-oligolactide-heparin hydrogel as a multi-functional scaffold for tissue regeneration[J]. Macromol Biosci, 2008, 8(12): 1152-1160.
[21] Chen YR, Zhou ZX, Zhang JY, et al. Low-molecular-weight heparin-functionalized chitosan-chondroitin sulfate hydrogels for controlled release of TGF-beta3 and in vitro neocartilage formation[J]. Front Chem, 2019, 7: 745.
[22] Chung YI, Ahn KM, Jeon SH, et al. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex[J]. J Control Release, 2007, 121(1-2): 91-99.
[23] Kim S, Fan J, Lee CS, et al. Heparinized chitosan stabilizes the bioactivity of BMP-2 and potentiates the osteogenic efficacy of demineralized bone matrix[J]. J Biol Eng, 2020, 14: 6.
[24] Levinson C, Lee M, Applegate LA, et al. An injectable heparin-conjugated hyaluronan scaffold for local delivery of transforming growth factor beta1 promotes successful chondrogenesis[J]. Acta Biomater, 2019, 99: 168-180.
[25] Peng Y, Tellier LE, Temenoff JS. Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery[J]. Biomater Sci, 2016, 4(9): 1371-1380.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金(82060394)、甘肃省自然科学基金(20JR10RA673)
通信作者: 王文己 E-mail: ldyyjzwwj@163.com
更新日期/Last Update: 2021-10-01