索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]原静晨,宋洁富,王小健,等.肠道菌群影响骨代谢的机制研究进展[J].国际骨科学杂志,2021,02:89-92.
点击复制

肠道菌群影响骨代谢的机制研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2021年02期
页码:
89-92
栏目:
综述
出版日期:
2021-04-20

文章信息/Info

Title:
-
作者:
原静晨宋洁富王小健程杰
030012 太原, 山西医科大学附属人民医院脊柱外科(原静晨、宋洁富、王小健); 030012 太原, 山西医科大学附属人民医院胃肠外科(程杰)
Author(s):
-
关键词:
肠道菌群 骨代谢 骨质疏松症 影响机制
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2021.02.006
文献标识码:
-
摘要:
肠道菌群在维持人体健康中起主要作用。肠道菌群与骨代谢联系密切,其对骨骼形成或破坏的作用机制可由免疫系统介导,可通过调节破骨细胞诱导因子、调节性T细胞表达以及辅助性T细胞17分化等途径增强或抑制破骨细胞活性。肠道菌群也可以影响雌激素、胰岛素样生长因子-1、5-羟色胺等内分泌激素,从而影响骨骼健康。肠道菌群还可通过自身及其代谢产物的变化直接或间接影响骨代谢。对肠道菌群影响骨代谢机制的探讨,有助于研究肠道微生物在骨代谢中的作用,为难治性骨质疏松症的治疗提供新思路。
Abstract:
-

参考文献/References

[1] Tatangelo G, Watts J, Lim K, et al. The cost of osteoporosis, osteopenia, and associated fractures in australia in 2017[J]. J Bone Miner Res, 2019, 34(4): 616-625.
[2] Neugebauer J, Heilig J, Hosseini-Barkooie M, et al. Plastin 3 influences bone homeostasis through regulation of osteoclast activity[J]. Hum Mol Genet, 2018, 27(24): 4249-4262.
[3] Song EJ, Lee ES, Nam YD. Progress of analytical tools and techniques for human gut microbiome research[J]. J Microbiol, 2018, 56(10): 693-705.
[4] Faderl M, Noti M, Corazza N, et al. Keeping bugs in check: the mucus layer as a critical component in maintaining intestinal homeostasis[J]. IUBMB Life, 2015, 67(4): 275-285.
[5] Kwa M, Plottel CS, Blaser MJ, et al. The intestinal microbiome and estrogen receptor-positive female breast cancer[J]. J Natl Cancer Inst, 2016, 108(8): djw029.
[6] Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the microbiome[J]. mBio, 2016, 7(4): e01018-16.
[7] Ussar S, Fujisaka S, Kahn CR. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome[J]. Mol Metab, 2016, 5(9): 795-803.
[8] Pevsner-Fischer M, Blacher E, Tatirovsky E, et al. The gut microbiome and hypertension[J]. Curr Opin Nephrol Hypertens, 2017, 26(1): 1-8.
[9] Weivoda MM, Chew CK, Monroe DG, et al. Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism[J]. Nat Commun, 2020, 11(1): 87.
[10] Marini F, Cianferotti L, Brandi ML. Epigenetic mechanisms in bone biology and osteoporosis: can they drive therapeutic choices?[J]. Int J Mol Sci, 2016, 17(8): 1329.
[11] Schwarzer M, Makki K, Storelli G, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition[J]. Science, 2016, 351(6275): 854-857.
[12] Zhang J, Motyl KJ, Irwin R, et al. Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic lactobacillus reuteri[J]. Endocrinology, 2015, 156(9): 3169-3182.
[13] Collins FL, Rios-Arce ND, Schepper JD, et al. The potential of probiotics as a therapy for osteoporosis[J]. Microbiol Spectr, 2017, 5(4): 10.
[14] Ohlsson C, Engdahl C, Fåk F, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss[J]. PLoS One, 2014, 9(3): e92368.
[15] Collins FL, Rios-Arce ND, Schepper JD, et al. Beneficial effects of Lactobacillus reuteri 6475 on bone density in male mice is dependent on lymphocytes[J]. Sci Rep, 2019, 9(1): 14708.
[16] Lucas S, Omata Y, Hofmann J, et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss[J]. Nat Commun, 2018, 9(1): 55.
[17] Pacifici R. T cells, osteoblasts, and osteocytes: interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone[J]. Ann N Y Acad Sci, 2016, 1364(1): 11-24.
[18] Luo CY, Wang L, Sun C, et al. Estrogen enhances the functions of CD4(+)CD25(+)Foxp3(+)regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro[J]. Cell Mol Immunol, 2011, 8(1): 50-58.
[19] Hao ML, Wang GY, Zuo XQ, et al. Gut microbiota: an overlooked factor that plays a significant role in osteoporosis[J]. J Int Med Res, 2019, 47(9): 4095-4103.
[20] Britton RA, Irwin R, Quach D, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model[J]. J Cell Physiol, 2014, 229(11): 1822-1830.
[21] Kim S, Kim H, Yim YS, et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring[J]. Nature, 2017, 549(7673): 528-532.
[22] Zhang C, Peng J, Wu S, et al. Dioscin promotes osteoblastic proliferation and differentiation via Lrp5 and ER pathway in mouse and human osteoblast-like cell lines[J]. J Biomed Sci, 2014, 21(1): 30.
[23] Vemuri R, Sylvia KE, Klein SL, et al. The microgenderome revealed: sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility[J]. Semin Immunopathol, 2019, 41(2): 265-275.
[24] Hernandez CJ, Guss JD, Luna M, et al. Links between the microbiome and bone[J]. J Bone Miner Res, 2016, 31(9): 1638-1646.
[25] Li JY, Chassaing B, Tyagi AM, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics[J]. J Clin Invest, 2016, 126(6): 2049-2063.
[26] Tetel MJ, de Vries GJ, Melcangi RC, et al. Steroids, stress and the gut microbiome-brain axis[J]. J Neuroendocrinol, 2017, 30(2): e12548.
[27] Yan J, Charles JF. Gut microbiota and IGF-1[J]. Calcif Tissue Int, 2018, 102(4): 406-414.
[28] Yan J, Herzog JW, Tsang K, et al. Gut microbiota induce IGF-1 and promote bone formation and growth[J]. Proc Natl Acad Sci U S A, 2016, 113(47): E7554-E7563.
[29] McCabe L, Britton RA, Parameswaran N. Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome[J]. Curr Osteoporos Rep, 2015, 3(6): 363-371.
[30] Roshchina VV. New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells[J]. Adv Exp Med Biol, 2016, 874: 25-77.
[31] Spohn SN, Mawe GM. Non-conventional features of peripheral serotonin signalling-the gut and beyond[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 412-420.
[32] Charles JF, Ermann J, Aliprantis AO. The intestinal microbiome and skeletal fitness:connecting bugs and bones[J]. Clin Immunol, 2015, 159(2): 163-169.
[33] Ejtahed HS, Soroush AR, Angoorani P, et al. Gut microbiota as a target in the pathogenesis of metabolic disorders: a new approach to novel therapeutic agents[J]. Horm Metab Res, 2016, 48(6): 349-358.
[34] Zhang J, Lu Y, Wang Y, et al. The impact of the intestinal microbiome on bone health[J]. Intractable Rare Dis Res, 2018, 7(3): 148-155.
[35] Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences[J]. Cell, 2014, 158(4): 705-721.
[36] Blanton LV, Charbonneau MR, Salih T, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children[J]. Science, 2016, 351(6275): aad3311.
[37] Chen YC, Greenbaum J, Shen H, et al. Association between gut microbiota and bone health: potential mechanisms and prospective[J]. J Clin Endocrinol Metab, 2017, 102(10): 3635-3646.

备注/Memo

备注/Memo:
基金项目: 山西省重点研发计划项目(201803D31160)
通信作者: 宋洁富 E-mail: 13803466607@qq.com
更新日期/Last Update: 2021-04-20