索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]刘衒哲,徐佳,文根,等.皮肤创面愈合过程中神经与血管的相互作用[J].国际骨科学杂志,2021,01:30-34.
点击复制

皮肤创面愈合过程中神经与血管的相互作用(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2021年01期
页码:
30-34
栏目:
综述
出版日期:
2021-02-10

文章信息/Info

Title:
-
作者:
刘衒哲徐佳文根吴天一刘珅柴益民
200233, 上海交通大学附属第六人民医院骨科
Author(s):
-
关键词:
皮肤创面愈合 神经与血管相互作用 神经肽 生长因子
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2021.01.008
文献标识码:
-
摘要:
神经与血管的相互作用对皮肤创面愈合有重要调节功能。中枢神经系统、周围神经系统和自主神经系统均对创面愈合中的血管再生有促进作用,但其作用机制各不相同。同时,在神经肽和血管再生相关因子的相互作用下,施旺细胞、血管内皮细胞和免疫细胞发生增殖、迁移和分化,进而通过神经与血管的相互作用调控创面愈合过程。
Abstract:
-

参考文献/References

[1] Kiya K, Kubo T. Neurovascular interactions in skin wound healing[J]. Neurochem Int, 2019, 125: 144-150.
[2] Shiferaw WS, Akalu TY, Mulugeta H, et al. The global burden of pressure ulcers among patients with spinal cord injury: a systematic review and meta-analysis[J]. BMC Musculoskelet Disord, 2020, 21(1): 334.
[3] Marbourg JM, Bratasz A, Mo X, et al. Spinal cord injury suppresses cutaneous inflammation: implications for peripheral wound healing[J]. J Neurotrauma, 2017, 34(6): 1149-1155.
[4] Alapure BV, Lu Y, Peng H, et al. Surgical denervation of specific cutaneous nerves impedes excisional wound healing of small animal ear pinnae[J]. Mol Neurobiol, 2018, 55(2): 1236-1243.
[5] Ashrafi M, Baguneid M, Bayat A. The role of neuromediators and innervation in cutaneous wound healing[J]. Acta Derm Venereol, 2016, 96(5): 587-594.
[6] Zheng Z, Wan Y, Liu Y, et al. Sympathetic denervation accelerates wound contraction but inhibits reepithelialization and pericyte proliferation in diabetic mice[J]. J Diabetes Res, 2017, 2017: 7614685.
[7] Donadio V, Incensi A, Vacchiano V, et al. The autonomic innervation of hairy skin in humans: an in vivo confocal study[J]. Sci Rep, 2019, 9(1): 16982.
[8] Morikawa S, Iribar H, Gutiérrez-Rivera A, et al. Pericytes in cutaneous wound healing[J]. Adv Exp Med Biol, 2019, 1147: 1-63.
[9] Etxaniz U, Pérez-San Vicente A, Gago-López N, et al. Neural-competent cells of adult human dermis belong to the Schwann lineage[J]. Stem Cell Reports, 2014, 3(5): 774-788.
[10] Silva WN, Leonel C, Prazeres PHDM, et al. Role of Schwann cells in cutaneous wound healing[J]. Wound Repair Regen, 2018, 26(5): 392-397.
[11] Parfejevs V, Debbache J, Shakhova O, et al. Injury-activated glial cells promote wound healing of the adult skin in mice[J]. Nat Commun, 2018, 9(1): 236.
[12] Bray ER, Chéret J, Yosipovitch G, et al. Schwann cells as underestimated, major players in human skin physiology and pathology[J]. Exp Dermatol, 2020, 29(1): 93-101.
[13] Rocco ML, Soligo M, Manni L, et al. Nerve growth factor: early studies and recent clinical trials[J]. Curr Neuropharmacol, 2018, 16(10): 1455-1465.
[14] Vidal Yucha SE, Tamamoto KA, Kaplan DL. The importance of the neuro-immuno-cutaneous system on human skin equivalent design[J]. Cell Prolif, 2019, 52(6): e12677.
[15] Lebonvallet N, Laverdet B, Misery L, et al. New insights into the roles of myofibroblasts and innervation during skin healing and innovative therapies to improve scar innervation[J]. Exp Dermatol, 2018, 27(9): 950-958.
[16] Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing: a cellular perspective[J]. Physiol Rev, 2019, 99(1): 665-706.
[17] Mashaghi A, Marmalidou A, Tehrani M, et al. Neuropeptide substance P and the immune response[J]. Cell Mol Life Sci, 2016, 73(22): 4249-4264.
[18] Kim DJ, Jang JH, Jang SS, et al. A novel substance P-based hydrogel for increased wound healing efficiency[J]. Molecules, 2018, 23(9): 2215.
[19] Kim S, Piao J, Hwang DY, et al. Substance P accelerates wound repair by promoting neovascularization and preventing inflammation in an ischemia mouse model[J]. Life Sci, 2019, 225: 98-106.
[20] Um J, Yu J, Park KS. Substance P accelerates wound healing in type 2 diabetic mice through endothelial progenitor cell mobilization and Yes-associated protein activation[J]. Mol Med Rep, 2017, 15(5): 3035-3040.
[21] Russell FA, King R, Smillie SJ, et al. Calcitonin gene-related peptide: physiology and pathophysiology[J]. Physiol Rev, 2014, 94(4): 1099-1142.
[22] Abad C, Tan YV. Immunomodulatory roles of PACAP and VIP: lessons from knockout mice[J]. J Mol Neurosci, 2018, 66(1): 102-113.
[23] Zhang Y, Gao N, Wu L, et al. Role of VIP and sonic hedgehog signaling pathways in mediating epithelial wound healing, sensory nerve regeneration, and their defects in diabetic corneas[J]. Diabetes, 2020, 69(7): 1549-1561.
[24] Qi M, Zhou Q, Zeng W, et al. Growth factors in the pathogenesis of diabetic foot ulcers[J]. Front Biosci(Landmark Ed), 2018, 23: 310-317.
[25] 章程, 王龑懋, 柴益民. 富血小板血浆治疗慢性难愈性创面研究进展[J]. 国际骨科学杂志, 2019, 40(2): 100-103.
[26] Koh BI, Lee HJ, Kwak PA, et al. VEGFR2 signaling drives meningeal vascular regeneration upon head injury[J]. Nat Commun, 2020, 11(1): 3866.
[27] Nishida Y, Yamada Y, Kanemaru H, et al. Vascularization via activation of VEGF-VEGFR signaling is essential for peripheral nerve regeneration[J]. Biomed Res, 2018, 39(6): 287-294.
[28] Zubair M, Ahmad J. Role of growth factors and cytokines in diabetic foot ulcer healing: a detailed review[J]. Rev Endocr Metab Disord, 2019, 20(2): 207-217.
[29] Ortega S, Ittmann M, Tsang SH, et al. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2[J]. Proc Natl Acad Sci U S A, 1998, 95(10): 5672-5677.
[30] Benington L, Rajan G, Locher C, et al. Fibroblast growth factor 2: a review of stabilisation approaches for clinical applications[J]. Pharmaceutics, 2020, 12(6): 508.
[31] Muscella A, Vetrugno C, Cossa LG, et al. TGF-β1 activates RSC96 Schwann cells migration and invasion through MMP-2 and MMP-9 activities[J]. J Neurochem, 2020, 153(4): 525-538.
[32] Jeon KI, Hindman HB, Bubel T, et al. Corneal myofibroblasts inhibit regenerating nerves during wound healing[J]. Sci Rep, 2018, 8(1): 12945.
[33] Xu J, Zanvit P, Hu L, et al. The cytokine TGF-β induces interleukin-31 expression from dermal dendritic cells to activate sensory neurons and stimulate wound itching[J]. Immunity, 2020, 53(2): 371-383.
[34] Gostynska N, Pannella M, Rocco ML, et al. The pleiotropic molecule NGF regulates the in vitro properties of fibroblasts, keratinocytes, and endothelial cells: implications for wound healing[J]. Am J Physiol Cell Physiol, 2020, 318(2): C360-C371.
[35] Berlanga-Acosta J, Camacho-Rodríguez H, Mendoza-Marí Y, et al. Epidermal growth factor in healing diabetic foot ulcers: from gene expression to tissue healing and systemic biomarker circulation[J]. MEDICC Rev, 2020, 22(3): 24-31.
[36] Tu J, Wan C, Zhang F, et al. Genetic correction of Werner syndrome gene reveals impaired pro-angiogenic function and HGF insufficiency in mesenchymal stem cells[J]. Aging Cell, 2020, 19(5): e13116.
[37] Johnston AP, Yuzwa SA, Carr MJ, et al. Dedifferentiated schwann cell precursors secreting paracrine factors are required for regeneration of the mammalian digit tip[J]. Cell Stem Cell, 2016, 19(4): 433-448.
[38] Ishihara J, Ishihara A, Starke RD, et al. The heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healing[J]. Blood, 2019, 133(24): 2559-2569.
[39] Krishnaswamy VR, Balaguru UM, Chatterjee S, et al. Dermatopontin augments angiogenesis and modulates the expression of transforming growth factor beta 1 and integrin alpha 3 beta 1 in endothelial cells[J]. Eur J Cell Biol, 2017, 96(3): 266-275.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金优秀青年项目(8192200505)、国家自然科学基金(81772314)
通信作者: 刘珅 E-mail: liushensjtu@sjtu.edu.cn
更新日期/Last Update: 2021-02-10