索引超出了数组界限。
[1] Kiya K, Kubo T. Neurovascular interactions in skin wound healing[J]. Neurochem Int, 2019, 125: 144-150.
[2] Shiferaw WS, Akalu TY, Mulugeta H, et al. The global burden of pressure ulcers among patients with spinal cord injury: a systematic review and meta-analysis[J]. BMC Musculoskelet Disord, 2020, 21(1): 334.
[3] Marbourg JM, Bratasz A, Mo X, et al. Spinal cord injury suppresses cutaneous inflammation: implications for peripheral wound healing[J]. J Neurotrauma, 2017, 34(6): 1149-1155.
[4] Alapure BV, Lu Y, Peng H, et al. Surgical denervation of specific cutaneous nerves impedes excisional wound healing of small animal ear pinnae[J]. Mol Neurobiol, 2018, 55(2): 1236-1243.
[5] Ashrafi M, Baguneid M, Bayat A. The role of neuromediators and innervation in cutaneous wound healing[J]. Acta Derm Venereol, 2016, 96(5): 587-594.
[6] Zheng Z, Wan Y, Liu Y, et al. Sympathetic denervation accelerates wound contraction but inhibits reepithelialization and pericyte proliferation in diabetic mice[J]. J Diabetes Res, 2017, 2017: 7614685.
[7] Donadio V, Incensi A, Vacchiano V, et al. The autonomic innervation of hairy skin in humans: an in vivo confocal study[J]. Sci Rep, 2019, 9(1): 16982.
[8] Morikawa S, Iribar H, Gutiérrez-Rivera A, et al. Pericytes in cutaneous wound healing[J]. Adv Exp Med Biol, 2019, 1147: 1-63.
[9] Etxaniz U, Pérez-San Vicente A, Gago-López N, et al. Neural-competent cells of adult human dermis belong to the Schwann lineage[J]. Stem Cell Reports, 2014, 3(5): 774-788.
[10] Silva WN, Leonel C, Prazeres PHDM, et al. Role of Schwann cells in cutaneous wound healing[J]. Wound Repair Regen, 2018, 26(5): 392-397.
[11] Parfejevs V, Debbache J, Shakhova O, et al. Injury-activated glial cells promote wound healing of the adult skin in mice[J]. Nat Commun, 2018, 9(1): 236.
[12] Bray ER, Chéret J, Yosipovitch G, et al. Schwann cells as underestimated, major players in human skin physiology and pathology[J]. Exp Dermatol, 2020, 29(1): 93-101.
[13] Rocco ML, Soligo M, Manni L, et al. Nerve growth factor: early studies and recent clinical trials[J]. Curr Neuropharmacol, 2018, 16(10): 1455-1465.
[14] Vidal Yucha SE, Tamamoto KA, Kaplan DL. The importance of the neuro-immuno-cutaneous system on human skin equivalent design[J]. Cell Prolif, 2019, 52(6): e12677.
[15] Lebonvallet N, Laverdet B, Misery L, et al. New insights into the roles of myofibroblasts and innervation during skin healing and innovative therapies to improve scar innervation[J]. Exp Dermatol, 2018, 27(9): 950-958.
[16] Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing: a cellular perspective[J]. Physiol Rev, 2019, 99(1): 665-706.
[17] Mashaghi A, Marmalidou A, Tehrani M, et al. Neuropeptide substance P and the immune response[J]. Cell Mol Life Sci, 2016, 73(22): 4249-4264.
[18] Kim DJ, Jang JH, Jang SS, et al. A novel substance P-based hydrogel for increased wound healing efficiency[J]. Molecules, 2018, 23(9): 2215.
[19] Kim S, Piao J, Hwang DY, et al. Substance P accelerates wound repair by promoting neovascularization and preventing inflammation in an ischemia mouse model[J]. Life Sci, 2019, 225: 98-106.
[20] Um J, Yu J, Park KS. Substance P accelerates wound healing in type 2 diabetic mice through endothelial progenitor cell mobilization and Yes-associated protein activation[J]. Mol Med Rep, 2017, 15(5): 3035-3040.
[21] Russell FA, King R, Smillie SJ, et al. Calcitonin gene-related peptide: physiology and pathophysiology[J]. Physiol Rev, 2014, 94(4): 1099-1142.
[22] Abad C, Tan YV. Immunomodulatory roles of PACAP and VIP: lessons from knockout mice[J]. J Mol Neurosci, 2018, 66(1): 102-113.
[23] Zhang Y, Gao N, Wu L, et al. Role of VIP and sonic hedgehog signaling pathways in mediating epithelial wound healing, sensory nerve regeneration, and their defects in diabetic corneas[J]. Diabetes, 2020, 69(7): 1549-1561.
[24] Qi M, Zhou Q, Zeng W, et al. Growth factors in the pathogenesis of diabetic foot ulcers[J]. Front Biosci(Landmark Ed), 2018, 23: 310-317.
[25] 章程, 王龑懋, 柴益民. 富血小板血浆治疗慢性难愈性创面研究进展[J]. 国际骨科学杂志, 2019, 40(2): 100-103.
[26] Koh BI, Lee HJ, Kwak PA, et al. VEGFR2 signaling drives meningeal vascular regeneration upon head injury[J]. Nat Commun, 2020, 11(1): 3866.
[27] Nishida Y, Yamada Y, Kanemaru H, et al. Vascularization via activation of VEGF-VEGFR signaling is essential for peripheral nerve regeneration[J]. Biomed Res, 2018, 39(6): 287-294.
[28] Zubair M, Ahmad J. Role of growth factors and cytokines in diabetic foot ulcer healing: a detailed review[J]. Rev Endocr Metab Disord, 2019, 20(2): 207-217.
[29] Ortega S, Ittmann M, Tsang SH, et al. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2[J]. Proc Natl Acad Sci U S A, 1998, 95(10): 5672-5677.
[30] Benington L, Rajan G, Locher C, et al. Fibroblast growth factor 2: a review of stabilisation approaches for clinical applications[J]. Pharmaceutics, 2020, 12(6): 508.
[31] Muscella A, Vetrugno C, Cossa LG, et al. TGF-β1 activates RSC96 Schwann cells migration and invasion through MMP-2 and MMP-9 activities[J]. J Neurochem, 2020, 153(4): 525-538.
[32] Jeon KI, Hindman HB, Bubel T, et al. Corneal myofibroblasts inhibit regenerating nerves during wound healing[J]. Sci Rep, 2018, 8(1): 12945.
[33] Xu J, Zanvit P, Hu L, et al. The cytokine TGF-β induces interleukin-31 expression from dermal dendritic cells to activate sensory neurons and stimulate wound itching[J]. Immunity, 2020, 53(2): 371-383.
[34] Gostynska N, Pannella M, Rocco ML, et al. The pleiotropic molecule NGF regulates the in vitro properties of fibroblasts, keratinocytes, and endothelial cells: implications for wound healing[J]. Am J Physiol Cell Physiol, 2020, 318(2): C360-C371.
[35] Berlanga-Acosta J, Camacho-Rodríguez H, Mendoza-Marí Y, et al. Epidermal growth factor in healing diabetic foot ulcers: from gene expression to tissue healing and systemic biomarker circulation[J]. MEDICC Rev, 2020, 22(3): 24-31.
[36] Tu J, Wan C, Zhang F, et al. Genetic correction of Werner syndrome gene reveals impaired pro-angiogenic function and HGF insufficiency in mesenchymal stem cells[J]. Aging Cell, 2020, 19(5): e13116.
[37] Johnston AP, Yuzwa SA, Carr MJ, et al. Dedifferentiated schwann cell precursors secreting paracrine factors are required for regeneration of the mammalian digit tip[J]. Cell Stem Cell, 2016, 19(4): 433-448.
[38] Ishihara J, Ishihara A, Starke RD, et al. The heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healing[J]. Blood, 2019, 133(24): 2559-2569.
[39] Krishnaswamy VR, Balaguru UM, Chatterjee S, et al. Dermatopontin augments angiogenesis and modulates the expression of transforming growth factor beta 1 and integrin alpha 3 beta 1 in endothelial cells[J]. Eur J Cell Biol, 2017, 96(3): 266-275.