[1] Galeiras Vázquez R, Ferreiro Velasco ME, Mourelo Farina M, et al. Update on traumatic acute spinal cord injury. Part 1[J]. Med Intensiva, 2017, 41(4): 237-247.
[2] Haque A, Ray SK, Cox A, et al. Neuron specific enolase: a promising therapeutic target in acute spinal cord injury[J]. Metab Brain Dis, 2016, 31(3): 487-495.
[3] Ni S, Cao Y, Jiang L, et al. Synchrotron radiation imaging reveals the role of estrogen in promoting angiogenesis after acute spinal cord injury in rats[J]. Spine(Phila Pa 1976), 2018, 43(18): 1241-1249.
[4] Orr MB, Gensel JC. Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses[J]. Neurotherapeutics, 2018, 15(3): 541-553.
[5] Sun P, Liu DZ, Jickling GC, et al. MicroRNA-based therapeutics in central nervous system injuries[J]. J Cereb Blood Flow Metab, 2018, 38(7): 1125-1148.
[6] Zhang T, Ni S, Luo Z, et al. The protective effect of microRNA-21 in neurons after spinal cord injury[J]. Spinal Cord, 2019, 57(2): 141-149.
[7] Long HQ, Li GS, Cheng X, et al. Role of hypoxia-induced VEGF in blood-spinal cord barrier disruption in chronic spinal cord injury[J]. Chin J Traumatol, 2015, 18(5): 293-295.
[8] Wang L, Lee AY, Wigg JP, et al. miR-126 regulation of angiogenesis in age-related macular degeneration in CNV mouse model[J]. Int J Mol Sci, 2016, 17(6): 895.
[9] Sweis R, Biller J. Systemic complications of spinal cord injury[J]. Curr Neurol Neurosci Rep, 2017, 17(2): 8.
[10] Herrera JJ, Sundberg LM, Zentilin L, et al. Sustained expression of vascular endothelial growth factor and angiopoietin-1 improves blood-spinal cord barrier integrity and functional recovery after spinal cord injury[J]. J Neurotrauma, 2010, 27(11): 2067-2076.
[11] Lu TX, Rothenberg ME. MicroRNA[J]. J Allergy Clin Immunol, 2018, 141(4): 1202-1207.
[12] Chung HJ, Chung WH, Do SH, et al. Up-regulation of microRNAs-21 and -223 in a sprague-dawley rat model of traumatic spinal cord injury[J]. Brain Sci, 2020, 10(3): 141.
[13] Jiang Y, Zhao S, Ding Y, et al. MicroRNA-21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury[J]. Mol Med Report, 2017, 16(3): 2522-2528.
[14] Bai Y, Bai X, Wang Z, et al. MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors[J]. Exp Mol Pathol, 2011, 91(1):471-477.
[15] Kuhnert F, Mancuso MR, Hampton J, et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126[J]. Development, 2008, 135(24): 3989-3993.
[16] van Solingen C, Seghers L, Bijkerk R, et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis[J]. J Cell Mol Med, 2009, 13(8A): 1577-1585.