索引超出了数组界限。
[1] Abat F, Alfredson H, Cucchiarini M, et al. Current trends in tendinopathy: consensus of the ESSKA basic science committee. Part Ⅰ: biology, biomechanics, anatomy and an exercise-based approach[J]. J Exp Orthop,2017, 4(1): 18-29.
[2] Schmid MR, Hodler J, Cathrein P, et al. Is impingement the cause of jumper's knee? Dynamic and static magnetic resonance imaging of patellar tendinitis in an open-configuration system[J]. Am J Sports Med, 2002, 30(3): 388-395.
[3] Khan KM, Cook JL, Kannus P, et al. Time to abandon the “tendinitis” myth[J]. BMJ, 2002, 324(7338): 626-627.
[4] Millar NL, Murrell GA, McInnes IB. Inflammatory mechanisms in tendinopathy-towards translation[J]. Nat Rev Rheumatol, 2017, 13(2): 110-122.
[5] Chow YY, Chin KY. The Role of Inflammation in the pathogenesis of osteoarthritis[J]. Mediators Inflamm, 2020, 2020: 8293921.
[6] Medzhitov R. Origin and physiological roles of inflammation[J]. Nature, 2008, 454(7203): 428-435.
[7] Gong T, Liu L, Jiang W, et al. DAMP-sensing receptors in sterile inflammation and inflammatory diseases[J]. Nat Rev Immunol, 2020, 20(2): 95-112.
[8] Millar NL, Murrell GA, McInnes IB. Alarmins in tendinopathy: unravelling new mechanisms in a common disease[J]. Rheumatology(Oxford), 2013, 52(5): 769-779.
[9] Crowe LN, McLean M, Kitson SM, et al. S100A8 & S100A9: alarmin mediated inflammation in tendinopathy[J]. Sci Rep, 2019, 9(1): 1463.
[10] Thankam FG, Roesch ZK, Dilisio MF, et al. Association of Inflammatory Responses and ECM Disorganization with HMGB1 upregulation and NLRP3 inflammasome activation in the injured rotator cuff tendon[J]. Sci Rep, 2018, 8(1): 8918.
[11] Thankam FG, Dilisio MF, Dietz NE, et al. TREM-1, HMGB1 and RAGE in the shoulder tendon: dual mechanisms for inflammation based on the coincidence of glenohumeral arthritis[J]. PLoS One, 2016, 11(10): e0165492.
[12] Mosca MJ, Carr AJ, Snelling SJ, et al. Differential expression of alarmins-S100A9, IL-33, HMGB1 and HIF-1alpha in supraspinatus tendinopathy before and after treatment[J]. BMJ Open Sport Exerc Med, 2017, 3(1): e000225.
[13] Millar NL, Gilchrist DS, Akbar M, et al. MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease[J]. Nat Commun, 2015, 6: 6774.
[14] Stolk M, Klatte-Schulz F, Schmock A, et al. New insights into tenocyte-immune cell interplay in an in vitro model of inflammation[J]. Sci Rep, 2017, 7(1): 9801.
[15] Dakin SG, Buckley CD, Al-Mossawi MH, et al. Persistent stromal fibroblast activation is present in chronic tendinopathy[J]. Arthritis Res Ther, 2017, 19(1): 16-27.
[16] Millar NL, Hueber AJ, Reilly JH, et al. Inflammation is present in early human tendinopathy[J]. Am J Sports Med, 2010, 38(10): 2085-2091.
[17] Kragsnaes MS, Fredberg U, Stribolt K, et al. Stereological quantification of immune-competent cells in baseline biopsy specimens from achilles tendons: results from patients with chronic tendinopathy followed for more than 4 years[J]. Am J Sports Med, 2014, 42(10): 2435-2445.
[18] Abraham AC, Shah SA, Golman M, et al. Targeting the NF-kappaB signaling pathway in chronic tendon disease[J]. Sci Transl Med, 2019, 11(481): eaav4319.
[19] Schwartz AJ, Sarver DC, Sugg KB, et al. p38 MAPK signaling in postnatal tendon growth and remodeling[J]. PLoS One, 2015, 10(3): e0120044.
[20] Liu X, Chen W, Zhou Y, et al. Mechanical tension promotes the osteogenic differentiation of rat tendon-derived stem cells through the Wnt5a/Wnt5b/JNK signaling pathway[J]. Cell Physiol Biochem, 2015, 36(2): 517-530.
[21] Zhong Z, Liang S, Sanchez-Lopez E, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation[J]. Nature, 2018, 560(7717): 198-203.
[22] Chen Q, Zhou J, Zhang B, et al. Cyclic stretching exacerbates tendinitis by enhancing NLRP3 Inflammasome activity via F-Actin depolymerization[J]. Inflammation, 2018, 41(5): 1731-1743.
[23] Bertheloot D, Latz E. HMGB1, IL-1alpha, IL-33 and S100 proteins: dual-function alarmins[J]. Cell Mol Immunol 2017, 14(1): 43-64.
[24] Katsma MS, Patel SH, Eldon E, et al. The influence of chronic IL-6 exposure, in vivo, on rat achilles tendon extracellular matrix[J]. Cytokine, 2017, 93: 10-14.
[25] Liu H, Gao F, Liang X, et al. Pathogenesis and development of patellar tendon fibrosis in a rabbit overuse model[J]. Am J Sports Med, 2020, 48(5): 1141-1150.
[26] Wang X, Xie L, Crane J, et al. Aberrant TGF-β activation in bone tendon insertion induces enthesopathy-like disease[J]. J Clin Invest, 2018, 128(2): 846-860.
[27] Rui YF, Lui PP, Wong YM, et al. BMP-2 stimulated non-tenogenic differentiation and promoted proteoglycan deposition of tendon-derived stem cells(TDSCs)in vitro[J]. J Orthop Res, 2013, 31(5): 746-753.
[28] Klatte-Schulz F, Giese G, Differ C, et al. An investigation of BMP-7 mediated alterations to BMP signalling components in human tenocyte-like cells[J]. Sci Rep, 2016, 6: 29703.
[29] Vasta S, Di Martino A, Zampogna B, et al. Role of VEGF, nitric oxide, and sympathetic neurotransmitters in the pathogenesis of tendinopathy: a review of the current evidences[J]. Front Aging Neurosci, 2016, 8: 186.
[30] El-Habta R, Chen J, Pingel J, et al. Tendinosis-like changes in denervated rat Achilles tendon[J]. BMC Musculoskelet Disord, 2018, 19(1): 426-435.
[31] Bergqvist F, Carr AJ, Wheway K, et al. Divergent roles of prostacyclin and PGE2 in human tendinopathy[J]. Arthritis Res Ther, 2019, 21(1): 74-86.
[32] Kim RJ, Hah YS, Gwark JY, et al. N-acetylcysteine reduces glutamate-induced cytotoxicity to fibroblasts of rat supraspinatus tendons[J]. Connect Tissue Res, 2019, 60(5): 431-443.
[33] Fong G, Backman LJ, Alfredson H, et al. The effects of substance P and acetylcholine on human tenocyte proliferation converge mechanistically via TGF-beta1[J]. PLoS One, 2017, 12(3): e0174101.
[34] Yang H, Wang H, Andersson U. Targeting inflammation driven by HMGB1[J]. Front Immunol, 2020, 11: 484.
[35] Sun X, Zeng H, Wang Q, et al. Glycyrrhizin ameliorates inflammatory pain by inhibiting microglial activation-mediated inflammatory response via blockage of the HMGB1-TLR4-NF-kB pathway[J]. Exp Cell Res, 2018, 369(1): 112-119.
[36] Wang Y, Shen S, Li Z, et al. MIR-140-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis[J]. Inflamm Res, 2020, 69(1): 63-73.
[37] Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1[J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 294-303.
[38] McHugh J. Targeting NF-κB in tendinopathy[J]. Nat Rev Rheumatol, 2019, 15(5): 251.
[39] Gülec A, Türk Y, Aydin BK, et al. Effect of curcumin on tendon healing: an experimental study in a rat model of achilles tendon injury[J]. Int Orthop, 2018, 42(8): 1905-1910.
[40] Jiang H, He H, Chen Y, et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders[J]. J Exp Med, 2017, 214(11): 3219-3238.
[41] Challoumas D, Kirwan PD, Borysov D, et al. Topical glyceryl trinitrate for the treatment of tendinopathies: a systematic review[J]. Br J Sports Med, 2019, 53(4): 251-262.