索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]肖广润,杨建东,林升元,等.有限元分析在脊柱外科中的应用及研究进展[J].国际骨科学杂志,2020,06:347-351.
点击复制

有限元分析在脊柱外科中的应用及研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2020年06期
页码:
347-351
栏目:
综述
出版日期:
2020-12-20

文章信息/Info

Title:
-
作者:
肖广润杨建东林升元张玉杰田原
225001 扬州, 江苏省苏北人民医院脊柱外科
Author(s):
-
关键词:
有限元分析 生物力学 脊柱外科 临床应用 骨折 解剖学
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2020.06.006
文献标识码:
A
摘要:
有限元分析是一种基于计算机技术的求近似数值的方法,可模拟复杂物理系统。人体脊柱解剖结构十分复杂,不但其周围毗邻重要的血管、神经,而且在多数情况下脊柱的力学状态是动态变化的,因而骨科生物力学研究的难度较大。大量研究证实,有限元分析可有效解决预测不同术式力学效应、植入物稳定性及寿命等难题。随着计算机和影像技术的不断发展,有限元分析在脊柱外科领域应用越来越广泛,间接促进了脊柱外科技术的发展,可为临床提供更好的手术方案。该文对有限元分析在优化手术技术、植入物效果、新技术应用等方面的脊柱外科临床应用问题作一综述。
Abstract:
-

参考文献/References

[1] Biswas J, Karmakar S, Majumder S, et al. Optimization of spinal implant screw for lower vertebra through finite element studies[J]. J Long Term Eff Med Implants, 2014, 24(2-3): 99-108.
[2] Kulduk A, Altun NS, Senkoylu A. Biomechanical comparison of effects of the Dynesys and Coflex dynamic stabilization systems on range of motion and loading characteristics in the lumbar spine: a finite element study[J]. Int J Med Robot, 2015, 11(4): 400-405.
[3] 王鹏, 王静成, 冯新民, 等. 胸腰椎骨折术后伤椎上终板骨缺损的生物力学有限元分析[J]. 中国现代医学杂志, 2017, 27(7): 72-79.
[4] Kumaresan S, Yoganandan N, Pintar FA. Finite element analysis of anterior cervical spine interbody fusion[J]. Biomed Mater Eng, 1997, 7(4): 221-230.
[5] Lotz JC, Colliou OK, Chin JR, et al. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study[J]. Spine(Phila Pa 1976), 1998, 23(23): 2493-2506.
[6] Ghezelbash F, Schmidt H, Shirazi-Adl A, et al. Internal load-sharing in the human passive lumbar spine: Review of in vitro and finite element model studies[J]. J Biomech, 2020, 102: 109441.
[7] Mustafy T, Moglo K, Adeeb S, et al. Injury mechanisms of the ligamentous cervical C2-C3 Functional Spinal Unit to complex loading modes: Finite Element study[J]. J Mech Behav Biomed Mater, 2016, 53: 384-396.
[8] Lasswell TL, Cronin DS, Medley JB, et al. Incorporating ligament laxity in a finite element model for the upper cervical spine[J]. Spine J, 2017, 17(11): 1755-1764.
[9] Liu H, Wang H, Liu J, et al. Biomechanical comparison of posterior intermediate screw fixation techniques with hybrid monoaxial and polyaxial pedicle screws in the treatment of thoracolumbar burst fracture: a finite element study[J]. J Orthop Surg Res, 2019, 14(1): 122.
[10] Guo LX, Li WJ. A biomechanical investigation of thoracolumbar burst fracture under vertical impact loads using finite element method[J]. Clin Biomech(Bristol, Avon), 2019, 68: 29-36.
[11] Zander T, Dreischarf M, Timm AK, et al. Impact of material and morphological parameters on the mechanical response of the lumbar spine: a finite element sensitivity study[J]. J Biomech, 2017, 53: 185-190.
[12] Ottardi C, Galbusera F, Luca A, et al. Finite element analysis of the lumbar destabilization following pedicle subtraction osteotomy[J]. Med Eng Phys, 2016, 38(5): 506-509.
[13] El-Rich M, Arnoux PJ, Wagnac E, et al. Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions[J]. J Biomech, 2009, 42(9): 1252-1262.
[14] Guo LX, Fan W. Impact of material properties of intervertebral disc on dynamic response of the human lumbar spine to vertical vibration: a finite element sensitivity study[J]. Med Biol Eng Comput, 2019, 57(1): 221-229.
[15] Goel VK, Grauer JN, Patel TC, et al. Effects of charité artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol[J]. Spine(Phila Pa 1976), 2005, 30(24): 2755-2764.
[16] Wang K, Deng Z, Wang H, et al. Influence of variations in stiffness of cervical ligaments on C5-C6 segment[J]. J Mech Behav Biomed Mater, 2017, 72: 129-137.
[17] Naserkhaki S, Arjmand N, Shirazi-Adl A, et al. Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model[J]. J Biomech, 2018, 70: 33-42.
[18] Rajasekaran S, Kanna RM, Schnake KJ, et al. Osteoporotic thoracolumbar fractures: how are they different? Classification and treatment algorithm[J]. J Orthop Trauma, 2017, 31(Suppl 4): S49-S56.
[19] Ottardi C, La Barbera L, Pietrogrande L, et al. Vertebroplasty and kyphoplasty for the treatment of thoracic fractures in osteoporotic patients: a finite element comparative analysis[J]. J Appl Biomater Funct Mater, 2016, 14(2): e197-e204.
[20] Zhang L, Li J, Yang H, et al. Histological evaluation of bone biopsy results during PVP or PKP of vertebral compression fractures[J]. Oncol Lett, 2013, 5(1): 135-138.
[21] Wang D, Li Y, Yin H, et al. Three-dimensional finite element analysis of optimal distribution model of vertebroplasty[J]. Ann Palliat Med, 2020, 9(3): 1062-1072.
[22] Xu G, Fu X, Du C, et al. Biomechanical effects of vertebroplasty on thoracolumbar burst fracture with transpedicular fixation: a finite element model analysis[J]. Orthop Traumatol Surg Res, 2014, 100(4): 379-383.
[23] La Barbera L, Cianfoni A, Ferrari A, et al. Stent-screw assisted internal fixation of osteoporotic vertebrae: a comparative finite element analysis on saif technique[J]. Front Bioeng Biotechnol, 2019, 7: 291.
[24] Zhu J, Yang S, Cai K, et al. Bioactive poly(methyl methacrylate)bone cement for the treatment of osteoporotic vertebral compression fractures[J]. Theranostics, 2020, 10(14): 6544-6560.
[25] Dai LY, Jiang SD, Wang XY, et al. A review of the management of thoracolumbar burst fractures[J]. Surg Neurol, 2007, 67(3): 221-231.
[26] Wang TN, Wu BL, Duan RM, et al.. Treatment of thoracolumbar fractures through different short segment pedicle screw fixation techniques: a finite element analysis[J]. Orthop Surg, 2020, 12(2): 601-608.
[27] Xu G, Fu X, Du C, et al. Biomechanical comparison of mono-segment transpedicular fixation with short-segment fixation for treatment of thoracolumbar fractures: a finite element analysis[J]. Proc Inst Mech Eng H, 2014, 228(10): 1005-1013.
[28] Li Y, Fogel GR, Liao Z, et al. Biomechanical analysis of two-level cervical disc replacement with a stand-alone U-shaped disc implant[J]. Spine(Phila Pa 1976), 2017, 42(20): E1173-E1181.
[29] Du CF, Liu CJ, Huang YP, et al. Effect of spiral nucleus implant parameters on the compressive biomechanics of lumbar intervertebral disc[J]. World Neurosurg, 2020, 134: e878-e884.
[30] Nie WZ, Ye M, Wang ZY. Infinite models in scoliosis: a review of the literature and analysis of personal experience[J]. Biomed Tech(Berl), 2008, 53(4): 174-180.
[31] Chen X, Cai H, Zhang G, et al. The construction of the scoliosis 3D finite element model and the biomechanical analysis of PVCR orthopaedy[J]. Saudi J Biol Sci, 2020, 27(2): 695-700.
[32] Yuchi CX, Sun G, Chen C, et al. Comparison of the biomechanical changes after percutaneous full-endoscopic anterior cervical discectomy versus posterior cervical foraminotomy at C5-C6: a finite element-based study[J]. World Neurosurg, 2019, 128: e905-e911.
[33] Fan Y, Zhou S, Xie T, et al. Topping-off surgery vs posterior lumbar interbody fusion for degenerative lumbar disease: a finite element analysis[J]. J Orthop Surg Res, 2019, 14(1): 476.
[34] Deng Z, Wang K, Wang H, et al. A finite element study of traditional Chinese cervical manipulation[J]. Eur Spine J, 2017, 26(9): 2308-2317.
[35] Li L, Shen T, Li YK. A finite element analysis of stress distribution and disk displacement in response to lumbar rotation manipulation in the sitting and side-lying positions[J]. J Manipulative Physiol Ther, 2017, 40(8): 580-586.

备注/Memo

备注/Memo:
基金项目: 扬州市“十三五”科教强卫专项基金(LJRC20182)
通信作者: 杨建东 E-mail: yangjiandong69@sohu.com
更新日期/Last Update: 2020-12-20