索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]杨文涛,关德宏.微RNA在骨损伤诊断和治疗中的研究进展[J].国际骨科学杂志,2020,05:285-288.
点击复制

微RNA在骨损伤诊断和治疗中的研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2020年05期
页码:
285-288
栏目:
综述
出版日期:
2020-10-20

文章信息/Info

Title:
-
作者:
杨文涛关德宏
150086, 哈尔滨医科大学附属第二医院骨外科五病房
Author(s):
-
关键词:
微RNA 骨不连 骨缺损 骨修复
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2020.05.007
文献标识码:
A
摘要:
微RNA(miRNA)与骨科疾病的发生密切相关。部分miRNA在骨折患者的骨组织和血清中表达失调,miRNA可通过激活多种信号转导通路对骨再生进行调节。miRNA在间充质干细胞和血管相关细胞中起着重要调控作用,影响骨折过程中的血管生成和成骨作用。部分miRNA与骨质疏松性骨折相关,可能作为骨折风险的评定指标。miRNA在骨愈合延迟、骨不连和骨缺损的治疗方面也有巨大潜力。该文对miRNA在骨损伤诊断和治疗中的研究进展作一综述。
Abstract:
-

参考文献/References

[1] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854.
[2] Vimalraj S, Miranda PJ, Ramyakrishna B, et al. Regulation of breast cancer and bone metastasis by microRNAs[J]. Dis Markers. 2013, 35(5): 369-387.
[3] Vimalraj S, Selvamurugan N. MicroRNAs expression and their regulatory networks during mesenchymal stem cells differentiation toward osteoblasts[J]. Int J Biol Macromol, 2014, 66: 194-202.
[4] Mens MMJ, Ghanbari M. Cell cycle regulation of stem cells by microRNAs[J]. Stem Cell Rev Rep, 2018, 14(3): 309-322.
[5] Termaat MF, Den Boer FC, Bakker FC, et al. Bone morphogenetic proteins. Development and clinical efficacy in the treatment of fractures and bone defects[J]. J Bone Joint Surg Am, 2005, 87(6): 1367-1378.
[6] Hadjiargyrou M, O'Keefe RJ. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease[J]. J Bone Miner Res, 2014, 29(11): 2307-2322.
[7] Nugent M. MicroRNAs and fracture healing[J]. Calcif Tissue Int, 2017, 101(4): 355-361.
[8] Gautvik KM, Günther CC, Prijatelj V, et al. Distinct subsets of noncoding RNAs are strongly associated with BMD and fracture, studied in weight-bearing and non-weight-bearing human bone[J]. J Bone Miner Res, 2020, 35(6): 1065-1076.
[9] Chen B, Yang W, Zhao H, et al. Abnormal expression of miR-135b-5p in bone tissue of patients with osteoporosis and its role and mechanism in osteoporosis progression[J]. Exp Ther Med, 2020, 19(2): 1042-1050.
[10] Mandourah AY, Ranganath L, Barraclough R, et al. Circulating microRNAs as potential diagnostic biomarkers for osteoporosis[J]. Sci Rep, 2018, 8(1): 8421.
[11] Kocijan R, Muschitz C, Geiger E, et al. Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures[J]. J Clin Endocrinol Metab, 2016, 101(11): 4125-4134.
[12] Feichtinger X, Muschitz C, Heimel P, et al. Bone-related circulating microRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their association to bone microstructure and histomorphometry[J]. Sci Rep, 2018, 8(1): 4867.
[13] Wong SA, Rivera KO, Miclau TR 3rd, et al. Microenvironmental regulation of chondrocyte plasticity in endochondral repair: a new frontier for developmental engineering[J]. Front Bioeng Biotechnol, 2018, 6: 58.
[14] Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration[J]. Bone, 2015, 70: 19-27.
[15] Freitas J, Santos SG, Gonçalves RM, et al. Genetically engineered-MSC therapies for non-unions, delayed unions and critical-size bone defects[J]. Int J Mol Sci, 2019, 20(14): 3430.
[16] Fang S, Deng Y, Gu P, et al. MicroRNAs regulate bone development and regeneration[J]. Int J Mol Sci, 2015, 16(4): 8227-8253.
[17] Rahman MS, Akhtar N, Jamil HM, et al. TGF-beta/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation[J]. Bone Res, 2015, 3: 15005.
[18] Yang C, Liu X, Zhao K, et al. miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1alpha pathway and enhances bone regeneration in critical size defects[J]. Stem Cell Res Ther, 2019, 10(1): 65.
[19] Sun Y, Xu L, Huang S, et al. mir-21 overexpressing mesenchymal stem cells accelerate fracture healing in a rat closed femur fracture model[J]. Biomed Res Int, 2015, 2015: 412327.
[20] Sun L, Li Z, Xue H, et al. MiR-26a promotes fracture healing of nonunion rats possibly by targeting SOSTDC1 and further activating Wnt/beta-catenin signaling pathway[J]. Mol Cell Biochem, 2019, 460(1-2): 165-173.
[21] Zhang Y, Xie RL, Croce CM, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2[J]. Proc Natl Acad Sci U S A, 2011, 108(24): 9863-9868.
[22] Shi L, Feng L, Liu Y, et al. MicroRNA-218 promotes osteogenic differentiation of mesenchymal stem cells and accelerates bone fracture healing[J]. Calcif Tissue Int, 2018, 103(2): 227-236.
[23] Ge JB, Lin JT, Hong HY, et al. MiR-374b promotes osteogenic differentiation of MSCs by degrading PTEN and promoting fracture healing[J]. Eur Rev Med Pharmacol Sci, 2018, 22(11): 3303-3310.
[24] Wan C, Gilbert SR, Wang Y, et al. Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration[J]. Proc Natl Acad Sci U S A, 2008, 105(2): 686-691.
[25] Saran U, Gemini Piperni S, Chatterjee S. Role of angiogenesis in bone repair[J]. Arch Biochem Biophys, 2014, 561: 109-117.
[26] Liu L, Liu Y, Feng C, et al. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis[J]. Biomaterials, 2019, 192: 523-536.
[27] Yan J, Chang B, Hu X, et al. Titanium implant functionalized with antimiR-138 delivered cell sheet for enhanced peri-implant bone formation and vascularization[J]. Mater Sci Eng C Mater Biol Appl, 2018, 89: 52-64.
[28] Wang R, Zhang H, Ding W, et al. miR-143 promotes angiogenesis and osteoblast differentiation by targeting HDAC7[J]. Cell Death Dis, 2020, 11(3): 179.
[29] Diomede F, Marconi GD, Fonticoli L, et al. Functional relationship between osteogenesis and angiogenesis in tissue regeneration[J]. Int J Mol Sci, 2020, 21(9): 3242.
[30] Bottani M, Banfi G, Lombardi G. Perspectives on miRNAs as epigenetic markers in osteoporosis and bone fracture risk: a step forward in personalized diagnosis[J]. Front Genet, 2019, 10: 1044.
[31] Mulholland EJ, Dunne N, McCarthy HO. MicroRNA as therapeutic targets for chronic wound healing[J]. Mol Ther Nucleic Acids, 2017, 8: 46-55.
[32] Beavers KR, Nelson CE, Duvall CL. MiRNA inhibition in tissue engineering and regenerative medicine[J]. Adv Drug Deliv Rev, 2015, 88: 123-137.

备注/Memo

备注/Memo:
基金项目: 哈尔滨市科技局基金(2016RAXYJ078)
通信作者: 关德宏 E-mail: Dehongguan@163.com
更新日期/Last Update: 2020-10-20