索引超出了数组界限。
[1] Sanders TL, Maradit Kremers H, Bryan AJ, et al. Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study[J]. Am J Sports Med, 2016, 44(6): 1502-1507.
[2] Brady MP, Weiss W. Clinical diagnostic tests versus MRI diagnosis of ACL tears[J]. J Sport Rehabil, 2018, 27(6): 596-600.
[3] Kostov H, Arsovski O, Kostova E, et al. Diagnostic assessment in anterior cruciate ligament(ACL)tears[J]. Pril(Makedon Akad Nauk Umet Odd Med Nauki), 2014, 35(1): 209-218.
[4] Gunaydin B, Sahin GG, Sari A, et al. A new method for diagnosis of anterior cruciate ligament tear: MRI with maximum flexion of knee in the prone position: a case control study[J]. Int J Surg, 2019, 68: 142-147.
[5] Muhle C, Ahn JM, Dieke C. Diagnosis of ACL and meniscal injuries: MR imaging of knee flexion versus extension compared to arthroscopy[J]. SpringerPlus, 2013, 2(1): 213.
[6] Sonnery-Cottet B, Colombet P. Partial tears of the anterior cruciate ligament[J]. Orthop Traumatol Surg Res, 2016, 102(1 Suppl): S59-S67.
[7] Cavinatto L, Gupta S, Morgan C, et al. Value of preoperative MRI and examination under anesthesia for differentiating complete from partial anterior cruciate ligament tears[J]. J Knee Surg, 2019, 32(7): 620-623.
[8] Lefevre N, Naouri JF, Herman S, et al. A current review of the meniscus imaging: proposition of a useful tool for its radiologic analysis[J]. Radiol Res Pract, 2016, 2016: 8329296.
[9] Shimizu T, Markes AR, Samaan MA, et al. Patients with abnormal limb kinetics at 6 months after anterior cruciate ligament reconstruction have an increased risk of persistent medial meniscal abnormality at 3 years[J]. Orthop J Sports Med, 2020, 8(1): 2325967119895248.
[10] Inderhaug E, Stephen JM, Williams A, et al. Biomechanical comparison of anterolateral procedures combined with anterior cruciate ligament reconstruction[J]. Am J Sports Med, 2017, 45(2): 347-354.
[11] Monaco E, Helito CP, Redler A, et al. Correlation between magnetic resonance imaging and surgical exploration of the anterolateral structures of the acute anterior cruciate ligament-injured knee[J]. Am J Sports Med, 2019, 47(5): 1186-1193.
[12] Ferretti A, Monaco E, Fabbri M, et al. Prevalence and classification of injuries of anterolateral complex in acute anterior cruciate ligament tears[J]. Arthroscopy, 2017, 33(1): 147-154.
[13] Helito CP, Helito PV, Costa HP, et al. Assessment of the anterolateral ligament of the knee by magnetic resonance imaging in acute injuries of the anterior cruciate ligament[J]. Arthroscopy, 2017, 33(1): 140-146.
[14] Hodel S, Kabelitz M, Tondelli T, et al. Introducing the lateral femoral condyle index as a risk factor for anterior cruciate ligament injury[J]. Am J Sports Med, 2019, 47(10): 2420-2426.
[15] Lansdown D, Ma CB. The influence of tibial and femoral bone morphology on knee kinematics in the anterior cruciate ligament injured knee[J]. Clin Sports Med, 2018, 37(1): 127-136.
[16] Tanaka MJ, Jones KJ, Gargiulo AM, et al. Passive anterior tibial subluxation in anterior cruciate ligament-deficient knees[J]. Am J Sports Med, 2013, 41(10): 2347-2352.
[17] Christensen JJ, Krych AJ, Engasser WM, et al. Lateral posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction[J]. Am J Sports Med, 2015, 43(10): 2510-2514.
[18] Grassi A, Macchiarola L, Urrizola Barrientos F, et al. Steep posterior tibial slope, anterior tibial subluxation, deep posterior lateral femoral condyle, and meniscal deficiency are common findings in multiple anterior cruciate ligament failures: an MRI case-control study[J]. Am J Sports Med, 2019, 47(2): 285-295.
[19] Boniello MR, Schwingler PM, Bonner JM, et al. Impact of hamstring graft diameter on tendon strength: a biomechanical study[J]. Arthroscopy, 2015, 31(6): 1084-1090.
[20] Agarwal S, de Sa D, Peterson DC, et al. Can preoperative magnetic resonance imaging predict intraoperative autograft size for anterior cruciate ligament reconstruction? A systematic review[J]. J Knee Surg, 2019, 32(7): 649-658.
[21] Ilahi OA, Staewen RS, Stautberg EF 3rd, et al. Estimating lengths of semitendinosus and gracilis tendons by magnetic resonance imaging[J]. Arthroscopy, 2018, 34(8): 2457-2462.
[22] Han Y, Kurzencwyg D, Hart A, et al. Measuring the anterior cruciate ligament's footprints by three-dimensional magnetic resonance imaging[J]. Knee Surg Sports Traumatol Arthrosc, 2012, 20(5): 986-995.
[23] Kim SH, Lee HJ, Park YB, et al. Anterior cruciate ligament tibial footprint size as measured on magnetic resonance imaging: does it reliably predict actual size?[J]. Am J Sports Med, 2018, 46(8): 1877-1884.
[24] Hofbauer M, Soldati F, Szomolanyi P, et al. Hamstring tendon autografts do not show complete graft maturity 6 months postoperatively after anterior cruciate ligament reconstruction[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(1): 130-136.
[25] Cavaignac E, Marot V, Faruch M, et al. Hamstring graft incorporation according to the length of the graft inside tunnels[J]. Am J Sports Med, 2018, 46(2): 348-356.
[26] Li HY, Li H, Wu ZY, et al. MRI-based tendon bone healing is related to the clinical functional scores at the first year after anterior cruciate ligament reconstruction with hamstring tendon autograft[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(2): 615-621.
[27] Zhang S, Liu S, Yang L, et al. Morphological changes of the femoral tunnel and their correlation with hamstring tendon autograft maturation up to 2 years after anterior cruciate ligament reconstruction using femoral cortical suspension[J]. Am J Sports Med, 2020, 48(3): 554-564.
[28] Ahn JH, Jeong HJ, Lee YS, et al. Graft bending angle is correlated with femoral intraosseous graft signal intensity in anterior cruciate ligament reconstruction using the outside-in technique[J]. Knee, 2016, 23(4): 666-673.
[29] Araki D, Kuroda R, Matsumoto T, et al. Three-dimensional analysis of bone tunnel changes after anatomic double-bundle anterior cruciate ligament reconstruction using multidetector-row computed tomography[J]. Am J Sports Med, 2014, 42(9): 2234-2241.
[30] Li H, Tao H, Cho S, et al. Difference in graft maturity of the reconstructed anterior cruciate ligament 2 years postoperatively: a comparison between autografts and allografts in young men using clinical and 3.0-T magnetic resonance imaging evaluation[J]. Am J Sports Med, 2012, 40(7): 1519-1526.
[31] Lee DW, Kim JG, Lee JH, et al. Comparison of modified transtibial and outside-in techniques in anatomic single-bundle anterior cruciate ligament reconstruction[J]. Arthroscopy, 2018, 34(10): 2857-2870.
[32] Oshima T, Putnis S, Grasso S, et al. Graft size and orientation within the femoral notch affect graft healing at 1 year after anterior cruciate ligament reconstruction [J]. Am J Sports Med, 2020, 48(1): 99-108.
[33] Li Q, Zhang Y, Zhan L, et al. Correlation analysis of magnetic resonance imaging-based graft maturity and outcomes after anterior cruciate ligament reconstruction using International Knee Documentation Committee scores[J]. Am J Phys Med Rehabil, 2019, 98(5): 387-391.
[34] Biercevicz AM, Akelman MR, Fadale PD, et al. MRI volume and signal intensity of ACL graft predict clinical, functional, and patient-oriented outcome measures after ACL reconstruction[J]. Am J Sports Med, 2015, 43(3): 693-699.
[35] Biercevicz AM, Akelman MR, Rubin LE, et al. The uncertainty of predicting intact anterior cruciate ligament degeneration in terms of structural properties using T(2)(*)relaxometry in a human cadaveric model[J]. J Biomech, 2015, 48(6): 1188-1192.
[36] Putnis S, Neri T, Grasso S, et al. ACL hamstring grafts fixed using adjustable cortical suspension in both the femur and tibia demonstrate healing and integration on MRI at one year[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(3): 906-914.
[37] Cunha JE, Barbosa GM, Castro PA, et al. Knee osteoarthritis induces atrophy and neuromuscular junction remodeling in the quadriceps and tibialis anterior muscles of rats[J]. Sci Rep, 2019, 9(1): 6366.
[38] van Yperen DT, Reijman M, van Es EM, et al. Twenty-year follow-up study comparing operative versus nonoperative treatment of anterior cruciate ligament ruptures in high-level athletes[J]. Am J Sports Med, 2018, 46(5): 1129-1136.
[39] Barbosa GM, Cunha JE, Russo TL, et al. Thirty days after anterior cruciate ligament transection is sufficient to induce signs of knee osteoarthritis in rats: pain, functional impairment, and synovial inflammation[J]. Inflamm Res, 2020, 69(3): 279-288.
[40] van Meer BL, Oei EH, Meuffels DE, et al. Degenerative changes in the knee 2 years after anterior cruciate ligament rupture and related risk factors: a prospective observational follow-up study[J]. Am J Sports Med, 2016, 44(6): 1524-1533.
[41] Patterson BE, Culvenor AG, Barton CJ, et al. Worsening knee osteoarthritis features on magnetic resonance imaging 1 to 5 years after anterior cruciate ligament reconstruction[J]. Am J Sports Med, 2018, 46(12): 2873-2883.
[42] Sharma L, Nevitt M, Hochberg M, et al. Clinical significance of worsening versus stable preradiographic MRI lesions in a cohort study of persons at higher risk for knee osteoarthritis[J]. Ann Rheum Dis, 2016, 75(9): 1630-1636.
[43] MARS Group, Wright RW, Huston LJ, et al. Descriptive epidemiology of the Multicenter ACL Revision Study(MARS)cohort[J]. Am J Sports Med, 2010, 38(10): 1979-1986.
[44] Pedneault C, Laverdiere C, Hart A, et al. Evaluating the accuracy of tibial tunnel placement after anatomic single-bundle anterior cruciate ligament reconstruction[J]. Am J Sports Med, 2019, 47(13): 3187-3194.
[45] Grasso S, Linklater J, Li Q, et al. Validation of an MRI protocol for routine quantitative assessment of tunnel position in anterior cruciate ligament reconstruction[J]. Am J Sports Med, 2018, 46(7): 1624-1631.