索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]叶梓鹏,徐俊杰,董士奎,等.膝关节后外侧结构损伤研究进展[J].国际骨科学杂志,2020,05:275-279.
点击复制

膝关节后外侧结构损伤研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2020年05期
页码:
275-279
栏目:
综述
出版日期:
2020-10-20

文章信息/Info

Title:
-
作者:
叶梓鹏徐俊杰董士奎蒋佳赵金忠
200233, 上海交通大学附属第六人民医院运动医学科
Author(s):
-
关键词:
膝关节后外侧结构 膝关节后外侧不稳 韧带损伤 重建 修复
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2020.05.005
文献标识码:
A
摘要:
膝关节后外侧结构(PLC)主要包括外侧副韧带(LCL)、腘肌肌腱(PT)和腘腓韧带(PFL),其中LCL主要维持力线稳定,PT和PFL共同维持旋转稳定。PLC损伤可导致膝关节后外侧不稳,体检可发现胫骨内翻、外旋程度增大等,MRI检查和内翻应力X线检查分别对急、慢性PLC损伤具有诊断价值。PLC损伤严重者应进行手术治疗,修复术和重建术分别有其适用范围。重建方式多种多样,着重恢复解剖和功能,近年来全关节镜下重建术引起关注。PLC损伤常合并血管神经和交叉韧带损伤,及时识别和共同处理有助于改善预后。该文就PLC损伤研究进展作一综述。
Abstract:
-

参考文献/References

[1] Nannaparaju M, Mortada S, Wiik A, et al. Posterolateral corner injuries: epidemiology, anatomy, biomechanics and diagnosis[J]. Injury, 2018, 49(6): 1024-1031.
[2] Porrino J, Sharp JW, Ashimolowo T, et al. An update and comprehensive review of the posterolateral corner of the knee[J]. Radiol Clin North Am, 2018, 56(6): 935-951.
[3] Liu P, Wang J, Xu Y, et al. In situ forces and length patterns of the fibular collateral ligament under controlled loading: an in vitro biomechanical study using a robotic system[J]. Knee Surg Sports Traumatol Arthrosc, 2015, 23(4): 1018-1025.
[4] Vap AR, Schon JM, Moatshe G, et al. The role of the peripheral passive rotation stabilizers of the knee with intact collateral and cruciate ligaments: a biomechanical study[J]. Orthop J Sports Med, 2017, 5(5): 2325967117708190.
[5] Thaunat M, Pioger C, Chatellard R, et al. The arcuate ligament revisited: role of the posterolateral structures in providing static stability in the knee joint[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(9): 2121-2127.
[6] Domnick C, Frosch KH, Raschke MJ, et al. Kinematics of different components of the posterolateral corner of the knee in the lateral collateral ligament-intact state: a human cadaveric study[J]. Arthroscopy, 2017, 33(10): 1821-1830.
[7] Ellera Gomes JL, Leie MA, Ramirez E, et al. Frog-leg test maneuver for the diagnosis of injuries to the posterolateral corner of the knee: a diagnostic accuracy study[J]. Clin J Sport Med, 2016, 26(3): 216-220.
[8] Branch TP, Stinton SK, Siebold R, et al. Assessment of knee laxity using a robotic testing device: a comparison to the manual clinical knee examination[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(8): 2460-2467.
[9] Kane PW, DePhillipo NN, Cinque ME, et al. Increased accuracy of varus stress radiographs versus magnetic resonance imaging in diagnosing fibular collateral ligament Grade Ⅲ tears[J]. Arthroscopy, 2018, 34(7): 2230-2235.
[10] Bonadio MB, Helito CP, Gury LA, et al. Correlation between magnetic resonance imaging and physical exam in assessment of injuries to posterolateral corner of the knee[J]. Acta Ortop Bras, 2014, 22(3): 124-126.
[11] Choi JY, Chang CB, Kim TK, et al. Magnetic resonance imaging findings of the lateral collateral ligament and popliteus tendon in symptomatic knees without instability[J]. Arthroscopy, 2015, 31(4): 665-672.
[12] Ahn SJ, Jeong YM, Lee BG, et al. Using three-dimensional isotropic SPACE MRI to detect posterolateral corner injury of the knee[J]. Acta Radiol, 2016, 57(10): 1251-1260.
[13] Kane PW, Cinque ME, Moatshe G, et al. Fibular collateral ligament: varus stress radiographic analysis using 3 different clinical techniques[J]. Orthop J Sports Med, 2018, 6(5): 2325967118770170.
[14] Shon OJ, Park JW, Kim BJ. Current concepts of posterolateral corner injuries of the knee[J]. Knee Surg Relat Res, 2017, 29(4): 256-268.
[15] Black BS, Stannard JP. Repair versus reconstruction in acute posterolateral instability of the knee[J]. Sports Med Arthrosc Rev, 2015, 23(1): 22-26.
[16] McCarthy M, Ridley TJ, Bollier M, et al. Posterolateral knee reconstruction versus repair[J]. Iowa Orthop J, 2015, 35: 20-25.
[17] Westermann RW, Marx RG, Spindler KP, et al. No difference between posterolateral corner repair and reconstruction with concurrent ACL surgery: results from a prospective multicenter cohort[J]. Orthop J Sports Med, 2019, 7(7): 2325967119861062.
[18] Zhang H, Zhang J, Liu X, et al. In vitro comparison of popliteus tendon and popliteofibular ligament reconstruction in an external rotation injury model of the knee: a cadaveric study evaluated by a navigation system[J]. Am J Sports Med, 2013, 41(9): 2136-2142.
[19] van Gennip S, van der Wal WA, Heesterbeek PJ, et al. Posterolateral corner reconstruction in combined injuries of the knee: improved stability with Larson's fibular sling reconstruction and comparison with LaPrade anatomical reconstruction[J]. Knee, 2020, 27(1): 124-131.
[20] Treme GP, Salas C, Ortiz G, et al. A biomechanical comparison of the Arciero and LaPradereconstruction for posterolateral corner knee injuries[J]. Orthop J Sports Med, 2019, 7(4): 2325967119838251.
[21] Yoon KH, Lee SH, Park SY, et al. Comparison of anatomic posterolateral knee reconstruction using 2 different popliteofibular ligament techniques[J]. Am J Sports Med, 2016, 44(4): 916-921.
[22] Serbino Junior JW, Albuquerque RF, Pereira CA, et al. Posterolateral anatomical reconstruction restored varus but not rotational stability: a biomechanical study with cadavers[J]. Knee, 2015, 22(6): 499-505.
[23] Miyatake S, Kondo E, Tsai TY, et al. Biomechanical comparisons between 4-strand and modified Larson 2-strand procedures for reconstruction of the posterolateral corner of the knee[J].Am J Sports Med, 2011, 39(7): 1462-1469.
[24] Lee YS, Cho JH, Lee MC, et al. Can anatomic posterolateral corner reconstruction using a fibular tunnel restore fibular footprints of the posterolateral complex? A cadaveric study[J]. Arthroscopy, 2020, 36(5): 1355-1362.
[25] Selim NM. Combined anterior cruciate ligament and posterolateral corner reconstruction by hamstring tendon autografts through a single femoral tunnel by graft-to-graft suspension and fixation[J]. Arthrosc Tech, 2018, 7(5): e557-e567.
[26] Krause M, Akoto R, Drenck TC, et al. Posterolateral rotatory knee instability-MRI evaluation of anatomic landmarks for tibial drill tunnel placement in open and arthroscopic popliteus tendon reconstruction[J]. J Knee Surg, 2019, 32(7): 667-672.
[27] Frosch KH, Akoto R, Drenck T, et al. Arthroscopic popliteus bypass graft for posterolateral instabilities of the knee: a new surgical technique[J]. Oper Orthop Traumatol, 2016, 28(3): 193-203.
[28] Li Y, Zhang H, Zhang J, et al. The clinical outcome of arthroscopic versus open popliteal tendon reconstruction combined with posterior cruciate ligament reconstruction in patients with type A posterolateral rotational instability[J]. Arthroscopy, 2019, 35(8): 2402-2409.
[29] Frings J, Kolb JP, Drenck TC, et al. Anatomic reconstruction of the posterolateral corner: an all-arthroscopic technique[J]. Arthrosc Tech, 2019, 8(2): e153-e161.
[30] Ridley TJ, McCarthy MA, Bollier MJ, et al. The incidence and clinical outcomes of peroneal nerve injuries associated with posterolateral corner injuries of the knee[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(3): 806-811.
[31] Li X, Song G, Li Y, et al. The “diagonal” lesion: a new type of combined injury pattern involving the impingement fracture of anteromedial tibial plateau and the injury of posterior cruciate ligament and posterolateral corner[J]. J Knee Surg, 2020, 33(6): 616-622.
[32] Freychet B, Kennedy NI, Sanders TL, et al. No difference between single and staged posterolateral corner surgical procedures in the multiligament injured/dislocated knee[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(7): 2170-2176.
[33] Hinckel BB, Demange MK, Gobbi RG, et al. The effect of mechanical varus on anterior cruciate ligament and lateral collateral ligament stress: finite element analyses[J]. Orthopedics, 2016, 39(4): e729-e736.
[34] Tischer T, Paul J, Pape D, et al. The impact of osseous malalignment and realignment procedures in knee ligament surgery: a systematic review of the clinical evidence[J]. Orthop J Sports Med, 2017, 5(3): 2325967117697287.
[35] Helito CP, Sobrado MF, Giglio PN, et al. Posterolateral reconstruction combined with one-stage tibial valgus osteotomy: technical considerations and functional results[J]. Knee, 2019, 26(2): 500-507.
[36] Kang KT, Koh YG, Nam JH, et al. Biomechanical evaluation of the influence of posterolateral corner structures on cruciate ligaments forces during simulated gait and squatting[J]. PLoS One, 2019, 14(4): e0214496.
[37] Temponi EF, de CarvalhoJúnior LH, Saithna A, et al. Incidence and MRI characterization of the spectrum of posterolateral corner injuries occurring in association with ACL rupture[J]. Skeletal Radiol, 2017, 46(8): 1063-1070.
[38] Lee HJ, Park YB, Ko YB, et al. The necessity of clinical application of tibial reduction for detection of underestimated posterolateral rotatory instability in combined posterior cruciate ligament and posterolateral corner deficient knee[J]. Knee Surg Sports Traumatol Arthrosc, 2015, 23(10): 3062-3069.
[39] Jiang W, Yao J, He Y, et al. The timing of surgical treatment of knee dislocations: a systematic review[J]. Knee Surg Sports Traumatol Arthrosc, 2015, 23(10): 3108-3113.
[40] Vicenti G, Solarino G, Carrozzo M, et al. Major concern in the multiligament-injured knee treatment: a systematic review[J]. Injury, 2019, 50(Suppl 2): S89-S94.
[41] Moatshe G, Chahla J, Brady AW, et al. The influence of graft tensioning sequence on tibiofemoral orientation during bicruciate and posterolateral corner knee ligament reconstruction: a biomechanical study[J]. Am J Sports Med, 2018, 46(8): 1863-1869.
[42] Chahla J, Murray IR, Robinson J, et al. Posterolateral corner of the knee: an expert consensus statement on diagnosis, classification, treatment, and rehabilitation[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(8): 2520-2529.

备注/Memo

备注/Memo:
通信作者: 赵金忠 E-mail: jzzhao@sjtu.edu.cn
更新日期/Last Update: 2020-10-20