索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]朱开元,徐翰南,王云,等.关节腔内药物递送系统研究进展[J].国际骨科学杂志,2020,05:271-274.
点击复制

关节腔内药物递送系统研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2020年05期
页码:
271-274
栏目:
综述
出版日期:
2020-10-20

文章信息/Info

Title:
-
作者:
朱开元徐翰南王云元晨锐杨云龙林俊卿郑宪友
200025, 上海交通大学医学院临床医学系临床医学八年制(朱开元、徐翰南、王云、元晨锐); 200230, 上海交通大学附属第六人民医院骨科(杨云龙、林俊卿、郑宪友)
Author(s):
-
关键词:
药物递送 生物材料 关节腔内注射 软骨
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2020.05.004
文献标识码:
A
摘要:
关节腔内注射是治疗骨科疾病的常用方法,但由于注射的药物在关节腔驻留周期较短以及软骨组织的渗透性受限,该方法的临床疗效存在限制。近年来出现了促进药物在软骨中渗透,增加药物在关节软骨及关节腔驻留周期的药物递送系统,主要包括微米级颗粒、水凝胶、纳米级颗粒、脂质体等类型的载体以及混合型载体,它们可以改善关节腔内注射药物的疗效。该文对关节腔内药物递送系统的研究进展作一综述。
Abstract:
-

参考文献/References

[1] Evans CH. Drug delivery to chondrocytes[J]. Osteoarthritis Cartilage, 2016, 24(1): 1-3.
[2] Ng L, Grodzinsky AJ, Patwari P, et al. Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy[J]. J Struct Biol, 2003, 143(3): 242-257.
[3] Lee HY, Han L, Roughley PJ, et al. Age-related nanostructural and nanomechanical changes of individual human cartilage aggrecan monomers and their glycosaminoglycan side chains[J]. J Struct Biol, 2013, 181(3): 264-273.
[4] Buschmann MD, Grodzinsky AJ. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics[J]. J Biomech Eng, 1995, 117(2): 179-192.
[5] Stefani RM, Lee AJ, Tan AR, et al. Sustained low-dose dexamethasone delivery via a PLGA microsphere-embedded agarose implant for enhanced osteochondral repair[J]. Acta biomater, 2020, 102: 326-340.
[6] Bajpayee AG, de la Vega RE, Scheu M, et al. Sustained intra-cartilage delivery of low dose dexamethasone using a cationic carrier for treatment of post traumatic osteoarthritis[J]. Eur Cell Mater, 2017, 34: 341-364.
[7] Bajpayee AG, Scheu M, Grodzinsky AJ, et al. Electrostatic interactions enable rapid penetration, enhanced uptake and retention of intra-articular injected avidin in rat knee joints[J]. J Orthop Res, 2014, 32(8): 1044-1051.
[8] Sterner B, Harms M, Wöll S, et al. The effect of polymer size and charge of molecules on permeation through synovial membrane and accumulation in hyaline articular cartilage[J]. Eur J Pharm Biopharm, 2016, 101: 126-136.
[9] Formica FA, Barreto G, Zenobi-Wong M. Cartilage-targeting dexamethasone prodrugs increase the efficacy of dexamethasone[J]. J Control Release, 2019, 295: 118-129.
[10] He T, Zhang C, Vedadghavami A, et al. Multi-arm Avidin nano-construct for intra-cartilage delivery of small molecule drugs[J]. J Control Release, 2020, 318: 109-123.
[11] Vedadghavami A, Wagner EK, Mehta S, et al. Cartilage penetrating cationic peptide carriers for applications in drug delivery to avascular negatively charged tissues[J]. Acta Biomater, 2019, 93: 258-269.
[12] Bajpayee AG, Grodzinsky AJ. Cartilage-targeting drug delivery: can electrostatic interactions help?[J]. Nat Rev Rheumatol, 2017, 13(3): 183-193.
[13] Hughes C, Faurholm B, Dell'accio F, et al. Human single-chain variable fragment that specifically targets arthritic cartilage[J]. Arthritis Rheum, 2010, 62(4): 1007-1016.
[14] Arunkumar P, Indulekha S, Vijayalakshmi S, et al. Synthesis, characterizations, in vitro and in vivo evaluation of etoricoxib-loaded poly(caprolactone)microparticles: a potential intra-articular drug delivery system for the treatment of osteoarthritis[J]. J Biomater Sci Polym Ed, 2016, 27(4): 303-316.
[15] Janssen M, Timur UT, Woike N, et al. Celecoxib-loaded PEA microspheres as an auto regulatory drug-delivery system after intra-articular injection[J]. J Control Release, 2016, 244(Pt A): 30-40.
[16] Gómez-Gaete C, Retamal M, Chávez C, et al. Development, characterization and in vitro evaluation of biodegradable rhein-loaded microparticles for treatment of osteoarthritis[J]. Eur J Pharm Sci, 2017, 96: 390-397.
[17] Buwalda SJ, Boere KW, Dijkstra PJ, et al. Hydrogels in a historical perspective: from simple networks to smart materials[J]. J Control Release, 2014, 190: 254-273.
[18] Faivre J, Shrestha BR, Burdynska J, et al. Wear protection without surface modification using a synergistic mixture of molecular brushes and linear polymers[J]. ACS Nano, 2017, 11(2): 1762-1769.
[19] Petrella RJ, Emans PJ, Alleyne J, et al. Safety and performance of Hydros and Hydros-TA for knee osteoarthritis: a prospective, multicenter, randomized, double-blind feasibility trial[J]. BMC Musculoskelet Disord, 2015, 16: 57.
[20] Maudens P, Jordan O, Allémann E. Recent advances in intra-articular drug delivery systems for osteoarthritis therapy[J]. Drug Discov Today, 2018, 23(10): 1761-1775.
[21] Maudens P, Meyer S, Seemayer CA, et al. Self-assembled thermoresponsive nanostructures of hyaluronic acid conjugates for osteoarthritis therapy[J]. Nanoscale, 2018, 10(4): 1845-1854.
[22] Joshi N, Yan J, Levy S, et al. Towards an arthritis flare-responsive drug delivery system[J]. Nat Commun, 2018, 9(1): 1275.
[23] Hampton T. Enzyme-responsive hydrogels may help treat arthritis[J]. JAMA, 2018, 319(21): 2161-2162.
[24] Bajpayee AG, Wong CR, Bawendi MG, et al. Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis[J]. Biomaterials, 2014, 35(1): 538-549.
[25] Bajpayee AG, Quadir MA, Hammond PT, et al. Charge based intra-cartilage delivery of single dose dexamethasone using Avidin nano-carriers suppresses cytokine-induced catabolism long term[J]. Osteoarthritis Cartilage, 2016, 24(1): 71-81.
[26] Geiger BC, Wang S, Padera RF Jr, et al. Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis[J]. Sci Transl Med, 2018, 10(469): eaat8800.
[27] Rideau E, Dimova R, Schwille P, et al. Liposomes and polymersomes: a comparative review towards cell mimicking[J]. Chem Soc Rev, 2018, 47(23): 8572-8610.
[28] Pradal J, Zuluaga MF, Maudens P, et al. Intra-articular bioactivity of a p38 MAPK inhibitor and development of an extended-release system[J]. Eur J Pharm Biopharm, 2015, 93: 110-117.
[29] Craciunescu O, Moldovan L, Moisei M, et al. Liposomal formulation of chondroitin sulfate enhances its antioxidant and anti-inflammatory potential in L929 fibroblast cell line[J]. J Liposome Res, 2013, 23(2): 145-153.
[30] Dong J, Jiang D, Wang Z, et al. Intra-articular delivery of liposomal celecoxib–hyaluronate combination for the treatment of osteoarthritis in rabbit model[J]. Int J Pharm, 2013, 441(1-2): 285-290.
[31] Daraee H, Etemadi A, Kouhi M, et al. Application of liposomes in medicine and drug delivery[J]. Artif Cells Nanomed Biotechnol, 2016, 44(1): 381-391.
[32] Maudens P, Seemayer CA, Thauvin C, et al. Nanocrystal-polymer particles: extended delivery carriers for osteoarthritis treatment[J]. Small, 2018, [Epub ahead of print].
[33] Arunkumar P, Indulekha S, Vijayalakshmi S, et al. Poly(caprolactone)microparticles and chitosan thermogels based injectable formulation of etoricoxib for the potential treatment of osteoarthritis[J]. Mater Sci Eng C Mater Biol Appl, 2016, 61: 534-544.

备注/Memo

备注/Memo:
通信作者: 郑宪友 E-mail: zhengxianyou@126.com
更新日期/Last Update: 2020-10-20