索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]高仁智,谢宗平.炎症细胞在肌腱病发病机制及治疗中的作用[J].国际骨科学杂志,2020,05:267-270.
点击复制

炎症细胞在肌腱病发病机制及治疗中的作用(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2020年05期
页码:
267-270
栏目:
综述
出版日期:
2020-10-20

文章信息/Info

Title:
-
作者:
高仁智谢宗平
200233, 上海交通大学附属第六人民医院骨科
Author(s):
-
关键词:
炎症 肌腱病 巨噬细胞 肥大细胞 淋巴细胞
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2020.05.003
文献标识码:
A
摘要:
肌腱病作为常见的肌肉骨骼系统疾病,一直以来都是研究的热点。早期研究认为炎症细胞不会存在于肌腱病组织中,但现今越来越多的研究发现炎症浸润在肌腱病发病过程中具有重要作用。巨噬细胞、肥大细胞、淋巴细胞等炎症细胞在肌腱病组织内浸润,并通过释放炎性因子等方式参与肌腱组织炎症反应,干扰肌腱组织自我愈合及修复能力。肌腱病组织内炎症细胞浸润主要以巨噬细胞为主,因此目前研究的重点是通过细胞疗法等方法清除巨噬细胞或改变巨噬细胞表型以促进肌腱病自我修复。该文就炎症细胞在肌腱病发病机制中的作用和潜在的治疗方式作一综述。
Abstract:
-

参考文献/References

[1] Tang C, Chen Y, Huang J, et al. The roles of inflammatory mediators and immunocytes in tendinopathy[J]. J Orthop Translat, 2018, 14: 23-33.
[2] Schneider M, Angele P, Jarvinen TA, et al. Rescue plan for Achilles: therapeutics steering the fate and functions of stem cells in tendon wound healing[J]. Adv Drug Deliv Rev, 2018, 129: 352-375.
[3] Florit D, Pedret C, Casals M, et al. Incidence of tendinopathy in team sports in a multidisciplinary sports club over 8 seasons[J].J Sports Sci Med, 2019, 18(4): 780-788.
[4] Yelin E, Weinstein S, King T. The burden of musculoskeletal diseases in the United States[J]. Semin Arthritis Rheum, 2016, 46(3): 259-260.
[5] Lipman K, Wang C, Ting K, et al. Tendinopathy: injury, repair, and current exploration[J]. Drug Des Devel Ther, 2018, 12: 591-603.
[6] 刘春雨, 韩小燕, 王琳. 腱病相关概念与机制的争论[J]. 中国组织工程研究, 2020, 24(2): 282-288.
[7] Dakin SG, Newton J, Martinez FO, et al. Chronic inflammation is a feature of Achilles tendinopathy and rupture[J]. Br J Sports Med, 2018, 52(6):359-367.
[8] Zhang K, Asai S, Yu B, et al. IL-1β irreversibly inhibits tenogenic differentiation and alters metabolism in injured tendon-derived progenitor cells in vitro[J]. Biochem Biophys Res Commun, 2015, 463(4): 667-672.
[9] Millar NL, Gilchrist DS, Akbar M, et al. MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease[J]. Nat Commun, 2015, 6: 6774.
[10] Millar NL, Akbar M, Campbell AL, et al. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy[J]. Sci Rep, 2016, 6: 27149.
[11] Speed C. Inflammation in tendon disorders[J]. Adv Exp Med Biol, 2016, 920: 209-220.
[12] Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms[J]. J Invest Dermatol, 2007, 127(3): 514-525.
[13] Dean BJ, Gettings P, Dakin SG, et al. Are inflammatory cells increased in painful human tendinopathy? A systematic review[J]. Br J Sports Med, 2016, 50(4): 216-220.
[14] Rees JD, Stride M, Scott A. Tendons: time to revisit inflammation[J]. Br J Sports Med, 2014, 48(21): 1553-1557.
[15] Klatte-Schulz F, Minkwitz S, Schmock A, et al. Different Achilles tendon pathologies show distinct histological and molecular characteristics[J]. Int J Mol Sci, 2018, 19(2):404.
[16] Hackett L, Millar NL, Lam P, et al. Are the symptoms of calcific tendinitis due to neoinnervation and/or neovascularization?[J]. J Bone Joint Surg Am, 2016, 98(3): 186-192.
[17] Dakin SG, Martinez FO, Yapp C, et al. Inflammation activation and resolution in human tendon disease[J]. Sci Transl Med, 2015, 7(311): 311ra173.
[18] Manning CN, Martel C, Sakiyama-Elbert SE, et al. Adipose-derived mesenchymal stromal cells modulate tendon fibroblast responses to macrophage-induced inflammation in vitro[J]. Stem Cell Res Ther, 2015, 6(1): 74.
[19] Marsolais D, Cote CH, Frenette J. Neutrophils and macrophages accumulate sequentially following Achilles tendon injury[J]. J Orthop Res, 2001, 19(6): 1203-1209.
[20] Schoenenberger AD, Foolen J, Moor P, et al. Substrate fiber alignment mediates tendon cell response to inflammatory signaling[J]. Acta Biomater, 2018, 71: 306-317.
[21] Dean BJ, Dakin SG, Millar NL, et al. Review: emerging concepts in the pathogenesis of tendinopathy[J]. Surgeon, 2017, 15(6): 349-354.
[22] Crowe LA, McLean M, Kitson SM, et al. S100A8 & S100A9: alarmin mediated inflammation in tendinopathy[J]. Sci Rep, 2019, 9(1): 1463.
[23] Dean BJ, Snelling SJ, Dakin SG, et al. Differences in glutamate receptors and inflammatory cell numbers are associated with the resolution of pain in human rotator cuff tendinopathy[J]. Arthritis Res Ther, 2015, 17(1): 176.
[24] Wernersson S, Pejler G. Mast cell secretory granules: armed for battle[J]. Nat Rev Immunol, 2014, 14(7): 478-494.
[25] González-de-Olano D, Alvarez-Twose I. Mast cells as key players in allergy and inflammation[J]. J Investig Allergol Clin Immunol, 2018, 28(6): 365-378.
[26] Reber LL, Sibilano R, Mukai K, et al. Potential effector and immunoregulatory functions of mast cells in mucosal immunity[J]. Mucosal Immunol, 2015, 8(3): 444-463.
[27] Christensen J, Alfredson H, Andersson G. Protease-activated receptors in the Achilles tendon-a potential explanation for the excessive pain signalling in tendinopathy[J]. Mol Pain, 2015, 11: 13.
[28] Alim MA, Ackermann PW, Eliasson P, et al. Increased mast cell degranulation and co-localization of mast cells with the NMDA receptor-1 during healing after Achilles tendon rupture[J]. Cell Tissue Res, 2017, 370(3): 451-460.
[29] Altieri P, Bertolotto M, Fabbi P, et al. Thrombin induces protease-activated receptor 1 signaling and activation of human atrial fibroblasts and dabigatran prevents these effects[J]. Int J Cardiol, 2018, 271: 219-227.
[30] Wojtukiewicz MZ, Hempel D, Sierko E, et al. Protease-activated receptors(PARs): biology and role in cancer invasion and metastasis[J]. Cancer Metastasis Rev, 2015, 34(4): 775-796.
[31] Posthuma JJ, Posma JN, Schep G, et al. Protease-activated receptors are potential regulators in the development of arterial endofibrosis in high-performance athletes[J]. J Vasc Surg, 2019, 69(4): 1243-1250.
[32] Ackermann PW, Franklin SL, Dean BJ, et al. Neuronal pathways in tendon healing and tendinopathy: update[J]. Front Biosci(Landmark Ed), 2014, 19: 1251-1278.
[33] Gupta R, Palchaudhuri S, Chattopadhyay D. Glutamate induces neutrophil cell migration by activating class Ⅰ metabotropic glutamate receptors[J]. Amino Acids, 2013, 44(2): 757-767.
[34] Noah AC, Li TM, Martinez LM, et al. Adaptive and innate immune cell responses in tendons and lymph nodes after tendon injury and repair[J]. J Appl Physiol(1985), 2020, 128(3): 473-482.
[35] Reinhardt A, Yevsa T, Worbs T, et al. Interleukin-23-dependent gamma/delta T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice[J]. Arthritis Rheumatol, 2016, 68(10): 2476-2486.
[36] Tardito S, Martinelli G, Soldano S, et al. Macrophage M1/M2 polarization and rheumatoid arthritis: a systematic review[J]. Autoimmun Rev, 2019, 18(11): 102397.
[37] de la Durantaye M, Piette AB, van Rooijen N, et al. Macrophage depletion reduces cell proliferation and extracellular matrix accumulation but increases the ultimate tensile strength of injured Achilles tendons[J]. J Orthop Res, 2014, 32(2): 279-285.
[38] Mauro A, Russo V, Di Marcantonio L, et al. M1 and M2 macrophage recruitment during tendon regeneration induced by amniotic epithelial cell allotransplantation in ovine[J]. Res Vet Sci, 2016, 105: 92-102.
[39] Gelberman RH, Linderman SW, Jayaram R, et al. Combined administration of ASCs and BMP-12 promotes an M2 macrophage phenotype and enhances tendon healing[J]. Clin Orthop Relat Res, 2017, 475(9): 2318-2331.
[40] Chamberlain CS, Clements AE, Kink JA, et al. Extracellular vesicle-educated macrophages promote early Achilles tendon healing[J]. Stem Cells, 2019, 37(5): 652-662.

备注/Memo

备注/Memo:
通信作者: 谢宗平 E-mail: x91034@qq.com
更新日期/Last Update: 2020-10-20