索引超出了数组界限。
[1] Tang C, Chen Y, Huang J, et al. The roles of inflammatory mediators and immunocytes in tendinopathy[J]. J Orthop Translat, 2018, 14: 23-33.
[2] Schneider M, Angele P, Jarvinen TA, et al. Rescue plan for Achilles: therapeutics steering the fate and functions of stem cells in tendon wound healing[J]. Adv Drug Deliv Rev, 2018, 129: 352-375.
[3] Florit D, Pedret C, Casals M, et al. Incidence of tendinopathy in team sports in a multidisciplinary sports club over 8 seasons[J].J Sports Sci Med, 2019, 18(4): 780-788.
[4] Yelin E, Weinstein S, King T. The burden of musculoskeletal diseases in the United States[J]. Semin Arthritis Rheum, 2016, 46(3): 259-260.
[5] Lipman K, Wang C, Ting K, et al. Tendinopathy: injury, repair, and current exploration[J]. Drug Des Devel Ther, 2018, 12: 591-603.
[6] 刘春雨, 韩小燕, 王琳. 腱病相关概念与机制的争论[J]. 中国组织工程研究, 2020, 24(2): 282-288.
[7] Dakin SG, Newton J, Martinez FO, et al. Chronic inflammation is a feature of Achilles tendinopathy and rupture[J]. Br J Sports Med, 2018, 52(6):359-367.
[8] Zhang K, Asai S, Yu B, et al. IL-1β irreversibly inhibits tenogenic differentiation and alters metabolism in injured tendon-derived progenitor cells in vitro[J]. Biochem Biophys Res Commun, 2015, 463(4): 667-672.
[9] Millar NL, Gilchrist DS, Akbar M, et al. MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease[J]. Nat Commun, 2015, 6: 6774.
[10] Millar NL, Akbar M, Campbell AL, et al. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy[J]. Sci Rep, 2016, 6: 27149.
[11] Speed C. Inflammation in tendon disorders[J]. Adv Exp Med Biol, 2016, 920: 209-220.
[12] Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms[J]. J Invest Dermatol, 2007, 127(3): 514-525.
[13] Dean BJ, Gettings P, Dakin SG, et al. Are inflammatory cells increased in painful human tendinopathy? A systematic review[J]. Br J Sports Med, 2016, 50(4): 216-220.
[14] Rees JD, Stride M, Scott A. Tendons: time to revisit inflammation[J]. Br J Sports Med, 2014, 48(21): 1553-1557.
[15] Klatte-Schulz F, Minkwitz S, Schmock A, et al. Different Achilles tendon pathologies show distinct histological and molecular characteristics[J]. Int J Mol Sci, 2018, 19(2):404.
[16] Hackett L, Millar NL, Lam P, et al. Are the symptoms of calcific tendinitis due to neoinnervation and/or neovascularization?[J]. J Bone Joint Surg Am, 2016, 98(3): 186-192.
[17] Dakin SG, Martinez FO, Yapp C, et al. Inflammation activation and resolution in human tendon disease[J]. Sci Transl Med, 2015, 7(311): 311ra173.
[18] Manning CN, Martel C, Sakiyama-Elbert SE, et al. Adipose-derived mesenchymal stromal cells modulate tendon fibroblast responses to macrophage-induced inflammation in vitro[J]. Stem Cell Res Ther, 2015, 6(1): 74.
[19] Marsolais D, Cote CH, Frenette J. Neutrophils and macrophages accumulate sequentially following Achilles tendon injury[J]. J Orthop Res, 2001, 19(6): 1203-1209.
[20] Schoenenberger AD, Foolen J, Moor P, et al. Substrate fiber alignment mediates tendon cell response to inflammatory signaling[J]. Acta Biomater, 2018, 71: 306-317.
[21] Dean BJ, Dakin SG, Millar NL, et al. Review: emerging concepts in the pathogenesis of tendinopathy[J]. Surgeon, 2017, 15(6): 349-354.
[22] Crowe LA, McLean M, Kitson SM, et al. S100A8 & S100A9: alarmin mediated inflammation in tendinopathy[J]. Sci Rep, 2019, 9(1): 1463.
[23] Dean BJ, Snelling SJ, Dakin SG, et al. Differences in glutamate receptors and inflammatory cell numbers are associated with the resolution of pain in human rotator cuff tendinopathy[J]. Arthritis Res Ther, 2015, 17(1): 176.
[24] Wernersson S, Pejler G. Mast cell secretory granules: armed for battle[J]. Nat Rev Immunol, 2014, 14(7): 478-494.
[25] González-de-Olano D, Alvarez-Twose I. Mast cells as key players in allergy and inflammation[J]. J Investig Allergol Clin Immunol, 2018, 28(6): 365-378.
[26] Reber LL, Sibilano R, Mukai K, et al. Potential effector and immunoregulatory functions of mast cells in mucosal immunity[J]. Mucosal Immunol, 2015, 8(3): 444-463.
[27] Christensen J, Alfredson H, Andersson G. Protease-activated receptors in the Achilles tendon-a potential explanation for the excessive pain signalling in tendinopathy[J]. Mol Pain, 2015, 11: 13.
[28] Alim MA, Ackermann PW, Eliasson P, et al. Increased mast cell degranulation and co-localization of mast cells with the NMDA receptor-1 during healing after Achilles tendon rupture[J]. Cell Tissue Res, 2017, 370(3): 451-460.
[29] Altieri P, Bertolotto M, Fabbi P, et al. Thrombin induces protease-activated receptor 1 signaling and activation of human atrial fibroblasts and dabigatran prevents these effects[J]. Int J Cardiol, 2018, 271: 219-227.
[30] Wojtukiewicz MZ, Hempel D, Sierko E, et al. Protease-activated receptors(PARs): biology and role in cancer invasion and metastasis[J]. Cancer Metastasis Rev, 2015, 34(4): 775-796.
[31] Posthuma JJ, Posma JN, Schep G, et al. Protease-activated receptors are potential regulators in the development of arterial endofibrosis in high-performance athletes[J]. J Vasc Surg, 2019, 69(4): 1243-1250.
[32] Ackermann PW, Franklin SL, Dean BJ, et al. Neuronal pathways in tendon healing and tendinopathy: update[J]. Front Biosci(Landmark Ed), 2014, 19: 1251-1278.
[33] Gupta R, Palchaudhuri S, Chattopadhyay D. Glutamate induces neutrophil cell migration by activating class Ⅰ metabotropic glutamate receptors[J]. Amino Acids, 2013, 44(2): 757-767.
[34] Noah AC, Li TM, Martinez LM, et al. Adaptive and innate immune cell responses in tendons and lymph nodes after tendon injury and repair[J]. J Appl Physiol(1985), 2020, 128(3): 473-482.
[35] Reinhardt A, Yevsa T, Worbs T, et al. Interleukin-23-dependent gamma/delta T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice[J]. Arthritis Rheumatol, 2016, 68(10): 2476-2486.
[36] Tardito S, Martinelli G, Soldano S, et al. Macrophage M1/M2 polarization and rheumatoid arthritis: a systematic review[J]. Autoimmun Rev, 2019, 18(11): 102397.
[37] de la Durantaye M, Piette AB, van Rooijen N, et al. Macrophage depletion reduces cell proliferation and extracellular matrix accumulation but increases the ultimate tensile strength of injured Achilles tendons[J]. J Orthop Res, 2014, 32(2): 279-285.
[38] Mauro A, Russo V, Di Marcantonio L, et al. M1 and M2 macrophage recruitment during tendon regeneration induced by amniotic epithelial cell allotransplantation in ovine[J]. Res Vet Sci, 2016, 105: 92-102.
[39] Gelberman RH, Linderman SW, Jayaram R, et al. Combined administration of ASCs and BMP-12 promotes an M2 macrophage phenotype and enhances tendon healing[J]. Clin Orthop Relat Res, 2017, 475(9): 2318-2331.
[40] Chamberlain CS, Clements AE, Kink JA, et al. Extracellular vesicle-educated macrophages promote early Achilles tendon healing[J]. Stem Cells, 2019, 37(5): 652-662.