索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]李俞锋,赵金忠.再生工程技术在肩袖损伤修复中的应用[J].国际骨科学杂志,2020,05:259-263.
点击复制

再生工程技术在肩袖损伤修复中的应用(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2020年05期
页码:
259-263
栏目:
综述
出版日期:
2020-10-20

文章信息/Info

Title:
-
作者:
李俞锋赵金忠
200233, 上海交通大学附属第六人民医院运动医学科
Author(s):
-
关键词:
再生工程 肩袖损伤 肩袖修复
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2020.05.001
文献标识码:
A
摘要:
肩袖损伤仅采用手术治疗难以获得较好愈合。再生工程技术涉及多种学科理念和方法,包括但不限于提供生长因子、干细胞移植和组织工程技术等方法,可主动促进肌腱/腱骨愈合和组织再生,最终达到修复和重建的目的。该文就目前再生工程技术在肩袖损伤修复中的应用研究作一综述,并探讨该技术应用于肩袖修复的发展方向。
Abstract:
-

参考文献/References

[1] Oliva F, Piccirilli E, Bossa M, et al. I.S.Mu.L.T - Rotator Cuff Tears Guidelines [J]. Muscles Ligaments Tendons J, 2016, 5(4): 227-263.
[2] Kataoka T, Kokubu T, Muto T, et al. Rotator cuff tear healing process with graft augmentation of fascia lata in a rabbit model[J]. J Orthop Surg Res, 2018, 13(1): 200.
[3] Randelli P, Cucchi D, Ragone V, et al. History of rotator cuff surgery[J]. Knee Surg Sports Traumatol Arthrosc, 2015, 23(2): 344-362.
[4] Patel S, Gualtieri AP, Lu HH, et al. Advances in biologic augmentation for rotator cuff repair[J]. Ann N Y Acad Sci, 2016, 1383(1): 97-114.
[5] Tang X, Daneshmandi L, Awale G, et al. Skeletal muscle regenerative engineering[J]. Regen Eng Transl Med, 2019, 5(3): 233-251.
[6] Negroni E, Gidaro T, Bigot A, et al. Invited review: Stem cells and muscle diseases: advances in cell therapy strategies[J]. Neuropathol Appl Neurobiol, 2015, 41(3): 270-287.
[7] Passipieri JA, Christ GJ. The potential of combination therapeutics for more complete repair of volumetric muscle loss injuries: the role of exogenous growth factors and/or progenitor cells in implantable skeletal muscle tissue engineering technologies[J]. Cells Tissues Organs, 2016, 202(3/4): 202-213.
[8] Fang CB, Yan HB, Guo XH, et al. Correlation of the expression of IGF-1, TGF-beta 1 and BMP12 with tendon degeneration caused by overused tendon of the long head of biceps brachii[J]. J Biomater Tissue Eng, 2019, 9(6): 778-782.
[9] Pauly S, Klatte F, Strobel C, et al. BMP-2 and BMP-7 affect human rotator cuff tendon cells in vitro[J]. J Shoulder Elbow Surg, 2012, 21(4): 464-473.
[10] Tokunaga T, Shukunami C, Okamoto N, et al. FGF-2 stimulates the growth of tenogenic progenitor cells to facilitate the generation of tenomodulin-positive tenocytes in a rat rotator cuff healing model[J]. Am J Sports Med, 2015, 43(10): 2411-2422.
[11] Davies MR, Liu X, Lee L, et al. TGF-β small molecule inhibitor SB431542 reduces rotator cuff muscle fibrosis and fatty infiltration by promoting fibro/adipogenic progenitor apoptosis[J]. PLoS One, 2016, 11(5): e0155486.
[12] Hee CK, Dines JS, Dines DM, et al. Augmentation of a rotator cuff suture repair using rhPDGF-BB and a type I bovine collagen matrix in an ovine model[J]. Am J Sports Med, 2011, 39(8): 1630-1639.
[13] Kovacevic D, Gulotta LV, Ying L, et al. rhPDGF-BB promotes early healing in a rat rotator cuff repair model[J]. Clin Orthop Relat Res, 2015, 473(5): 1644-1654.
[14] Singh H, Voss A, Mazzocca AD, et al. Biological augmentation of rotator cuff repair: platelet-rich plasma(PRP)and bone marrow aspirate(BMA)[J]. Tech Shoulder Elbow Surg, 2015, 16(4): 107-114.
[15] Cavendish PA, Everhart JS, Dibartola AC, et al. The effect of perioperative platelet-rich plasma injections on postoperative failure rates following rotator cuff repair: a systematic review with meta-analysis[J]. J Shoulder Elbow Surg, 2020, 29(5): 1059-1070.
[16] Tsekes D, Konstantopoulos G, Khan WS, et al. Use of stem cells and growth factors in rotator cuff tendon repair[J]. Eur J Orthop Surg Traumatol, 2019, 29(4): 747-757.
[17] Prabhath A, Vernekar VN, Sanchez E, et al. Growth factor delivery strategies for rotator cuff repair and regeneration[J]. Int J Pharm, 2018, 544(2): 358-371.
[18] Chung SW, Song BW, Kim YH, et al. Effect of platelet-rich plasma and porcine dermal collagen graft augmentation for rotator cuff healing in a rabbit model[J]. Am J Sports Med, 2013, 41(12): 2909-2918.
[19] Lee J, Lee CY, Park JH, et al. Differentiation of adipose-derived stem cells into functional chondrocytes by a small molecule that induces Sox9[J]. Exp Mol Med, 2020, 52(4): 672-681.
[20] Bianco ST, Moser HL, Galatz LM, et al. Biologics and stem cell-based therapies for rotator cuff repair[J]. Ann N Y Acad Sci, 2019, 1442(1): 35-47.
[21] Chen P, Cui L, Chen GF, et al. The application of BMP-12-overexpressing mesenchymal stem cells loaded 3D-printed PLGA scaffolds in rabbit rotator cuff repair[J]. Int J Biol Macromol, 2019, 138: 79-88.
[22] Huegel J, Kim DH, Cirone JM, et al. Autologous tendon-derived cell-seeded nanofibrous scaffolds improve rotator cuff repair in an age-dependent fashion[J]. J Orthop Res, 2017, 35(6): 1250-1257.
[23] Hernigou P, Flouzat Lachaniette CH, Delambre J, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study[J]. Int Orthop, 2014, 38(9): 1811-1818.
[24] Kim YS, Sung CH, Chung SH, et al. Does an injection of adipose-derived mesenchymal stem cells loaded in fibrin glue influence rotator cuff repair outcomes? A clinical and magnetic resonance imaging study[J]. Am J Sports Med, 2017, 45(9): 2010-2018.
[25] Gulotta LV, Kovacevic D, Ehteshami JR, et al. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model[J]. Am J Sports Med, 2009, 37(11): 2126-2133.
[26] Guo D, Li H, Liu Y, et al. Fibroblast growth factor-2 promotes the function of tendon-derived stem cells in Achilles tendon restoration in an Achilles tendon injury rat model[J]. Biochem Biophys Res Commun, 2020, 521(1): 91-97.
[27] Cheng B, Ge H, Zhou J, et al. TSG-6 mediates the effect of tendon derived stem cells for rotator cuff healing[J]. Eur Rev Med Pharmacol Sci, 2014, 18(2): 247-251.
[28] Law JX, Liau LL, Aminuddin BS, et al. Tissue-engineered trachea: a review[J]. Int J Pediatr Otorhinolaryngol, 2016, 91: 55-63.
[29] Zhao S, Su W, Shah V, et al. Biomaterials based strategies for rotator cuff repair[J]. Colloids Surf B Biointerfaces, 2017, 157: 407-416.
[30] Song R, Murphy M, Li C, et al. Current development of biodegradable polymeric materials for biomedical applications[J]. Drug Des Devel Ther, 2018, 12: 3117-3145.
[31] van Kampen C, Arnoczky S, Parks P, et al. Tissue-engineered augmentation of a rotator cuff tendon using a reconstituted collagen scaffold: a histological evaluation in sheep[J]. Muscles Ligaments Tendons J, 2013, 3(3): 229-235.
[32] Musson DS, Naot D, Chhana A, et al. In vitro evaluation of a novel non-mulberry silk scaffold for use in tendon regeneration[J]. Tissue Eng Part A, 2015, 21(9/10): 1539-1551.
[33] Smith RD, Carr A, Dakin SG, et al. The response of tenocytes to commercial scaffolds used for rotator cuff repair[J]. Eur Cell Mater, 2016, 31: 107-118.
[34] Bryant D, Holtby R, Willits K, et al. A randomized clinical trial to compare the effectiveness of rotator cuff repair with or without augmentation using porcine small intestine submucosa for patients with moderate to large rotator cuff tears: a pilot study[J]. J Shoulder Elbow Surg, 2016, 25(10): 1623-1633.
[35] Moffat KL, Kwei AS, Spalazzi JP, et al. Novel nanofiber-based scaffold for rotator cuff repair and augmentation[J]. Tissue Eng Part A, 2009, 15(1): 115-126.
[36] Zhao S, Zhao J, Dong S, et al. Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly(lactide-co-glycolide)fibrous membranes[J]. Int J Nanomedicine, 2014, 9: 2373-2385.
[37] Ma R, Tang S, Tan H, et al. Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material[J]. Int J Nanomedicine, 2014, 9: 3949-3961.
[38] Kovacevic D, Fox AJ, Bedi A, et al. Calcium-phosphate matrix with or without TGF-β3 improves tendon-bone healing after rotator cuff repair[J]. Am J Sports Med, 2011, 39(4): 811-819.
[39] Sharp PA, Langer R. Research agenda. Promoting convergence in biomedical science[J]. Science, 2011, 333(6042): 527.
[40] Narayanan N, Jiang C, Uzunalli G, et al. Polymeric electrospinning for musculoskeletal regenerative engineering[J]. Regen Eng Transl Med, 2016, 2(2): 69-84.
[41] Amini MH, Ricchetti ET, Iannotti JP, et al. An update on scaffold devices for rotator cuff repair[J]. Tech Shoulder Elb Surg, 2017, 18(3): 101-112.
[42] Bilodeau C, Goltsis O, Rogers IM, et al. Limitations of recellularized biological scaffolds for human transplantation[J]. J Tissue Eng Regen Med, 2020, 14(3): 521-538.
[43] Banyard DA, Bourgeois JM, Widgerow AD, et al. Regenerative biomaterials: a review[J]. Plast Reconstr Surg, 2015, 135(6): 1740-1748.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金(31972923,81772341)、国家重点研究发展计划(2018YFC1106200,2018YFC1106202)
通信作者: 赵金忠 E-mail: zhaojinzhong@vip.163.com
更新日期/Last Update: 2020-10-20