索引超出了数组界限。
[ 1 ] Maher C, Underwood M, Buchbinder R. Non-specific low back pain[J]. Lancet, 2017, 389(10070): 736-747.
[ 2 ] Wang MY, Vasudevan R, Mindea SA. Minimally invasive lateral interbody fusion for the treatment of rostral adjacent-segment lumbar degenerative stenosis without supplemental pedicle screw fixation[J]. J Neurosurg Spine, 2014, 21(6): 861-866.
[ 3 ] 王挽涛, 祁全, 赵大航. 椎间盘退变的再生修复治疗[J]. 中国矫形外科杂志, 2018, 26(13): 1210-1214.
[ 4 ] Liu Y, Wei J, Zhao Y, et al. Follistatin-like protein 1 promotes inflammatory reactions in nucleus pulposus cells by interacting with the MAPK and NF-κB signaling pathways[J]. Oncotarget, 2017, 8(26): 43023-43034.
[ 5 ] Gan Y, Tu B, Li P, et al. Low magnitude of compression enhances biosynthesis of mesenchymal stem cells towards nucleus pulposus cells via the TRPV4-dependent pathway[J]. Stem Cells Int, 2018, 2018: 7061898.
[ 6 ] Gao G, He J, Nong L, et al. Periodic mechanical stress induces the extracellular matrix expression and migration of rat nucleus pulposus cells by upregulating the expression of intergrin α1 and phosphorylation of downstream phospholipase Cγ1[J]. Mol Med Rep, 2016, 14(3): 2457-2464.
[ 7 ] Lu K, Li HY, Yang K, et al. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells[J]. Stem Cell Res Ther, 2017, 8(1): 108.
[ 8 ] An HS, Takegami K, Kamada H, et al. Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits[J]. Spine(Phila Pa 1976), 2005, 30(1): 25-31.
[ 9 ] Xu J, XQ E, Wang NX, et al. BMP7 enhances the effect of BMSCs on extracellular matrix remodeling in a rabbit model of intervertebral disc degeneration[J]. FEBS J, 2016, 283(9): 1689-1700.
[10] 张子琦, 杨佩, 王春生, 等. 微囊化软骨细胞诱导间充质干细胞定向分化治疗兔椎间盘退变的实验研究[J]. 西安交通大学学报: 医学版, 2019, 40(1): 49-54.
[11] Gan Y, Li S, Li P, et al. A controlled release codelivery system of mscs encapsulated in dextran/gelatin hydrogel with TGF-β3-loaded nanoparticles for nucleus pulposus regeneration[J]. Stem Cells Int, 2016, 2016: 9042019.
[12] Wu Y, Jia Z, Liu L, et al. Functional self-assembled peptide nanofibers for bone marrow mesenchymal stem cell encapsulation and regeneration in nucleus pulposus[J]. Artif Organs, 2016, 40(6): E112-E119.
[13] Elabd C, Centeno CJ, Schultz JR, et al. Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: a long-term safety and feasibility study[J]. J Transl Med, 2016, 14: 253.
[14] Sun Z, Luo B, Liu ZH, et al. Adipose-derived stromal cells protect intervertebral disc cells in compression: implications for stem cell regenerative disc therapy[J]. Int J Biol Sci, 2015, 11(2): 133-143.
[15] Thorpe AA, Boyes VL, Sammon C, et al. Thermally triggered injectable hydrogel, which induces mesenchymal stem cell differentiation to nucleus pulposus cells: potential for regeneration of the intervertebral disc[J]. Acta Biomater, 2016, 36: 99-111.
[16] Martinez AW, Caves JM, Ravi S, et al. Effects of crosslinking on the mechanical properties, drug release and cytocompatibility of protein polymers[J]. Acta Biomater, 2014, 10(1): 26-33.
[17] Zhou X, Tao Y, Wang J, et al. Three-dimensional scaffold of type Ⅱ collagen promote the differentiation of adipose-derived stem cells into a nucleus pulposus-like phenotype[J]. J Biomed Mater Res A, 2016, 104(7): 1687-1693.
[18] Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices[J]. Biomaterials, 1996, 17(5): 471-484.
[19] Jorge-Herrero E, Fernández P, Turnay J, et al. Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen[J]. Biomaterials, 1999, 20(6): 539-545.
[20] Zhou X, Tao Y, Chen E, et al. Genipin-cross-linked type Ⅱ collagen scaffold promotes the differentiation of adipose-derived stem cells into nucleus pulposus-like cells[J]. J Biomed Mater Res A, 2018, 106(5): 1258-1268.
[21] Zhou X, Wang J, Fang W, et al. Genipin cross-linked type Ⅱ collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus[J]. Acta Biomater, 2018, 71: 496-509.
[22] Zhou X, Wang J, Huang X, et al. Injectable decellularized nucleus pulposus-based cell delivery system for differentiation of adipose-derived stem cells and nucleus pulposus regeneration[J]. Acta Biomater, 2018, 81: 115-128.
[23] Kumar H, Ha DH, Lee EJ, et al. Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase Ⅰ study[J]. Stem Cell Res Ther, 2017, 8(1): 262.
[24] Qi L, Wang R, Shi Q, et al. Umbilical cord mesenchymal stem cell conditioned medium restored the expression of collagen Ⅱ and aggrecan in nucleus pulposus mesenchymal stem cells exposed to high glucose[J]. J Bone Miner Metab, 2019, 37(3): 455-466.
[25] Pang X, Yang H, Peng B. Human umbilical cord mesenchymal stem cell transplantation for the treatment of chronic discogenic low back pain[J]. Pain Physician, 2014, 17(4): E525-E530.