索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]方朝毅 皇甫小桥 戚文潇 赵金忠.运动学分析技术及其在肩关节领域的应用[J].国际骨科学杂志,2019,04:229-233.
点击复制

运动学分析技术及其在肩关节领域的应用(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2019年04期
页码:
229-233
栏目:
综述
出版日期:
2019-08-09

文章信息/Info

Title:
-
作者:
方朝毅 皇甫小桥 戚文潇 赵金忠
200233, 上海交通大学附属第六人民医院运动医学科
Author(s):
-
关键词:
运动学分析 肩关节 放射立体测量 运动捕捉 图像-模型配准
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2019.04.009
文献标识码:
-
摘要:
肩关节的各种疾病或外伤均可引起一系列肩关节运动学及动力学改变,精准还原真实运动过程能够较好地阐明肩关节病理学,对于疾病评估、治疗、随访至关重要。目前常用的运动学分析技术主要有运动捕捉技术、放射立体测量分析(RSA)、图像-模型配准技术等,但还没有公认最优的分析技术。RSA技术精确度高,但为侵入性操作,仅适用于部分患者; 运动捕捉技术常用电磁运动捕捉和光学运动捕捉技术,操作简便但精确度低; 图像-模型配准技术精确度高,但技术操作过程复杂费时,受试空间范围狭小,可完成的动作类型有限。该文对以上技术及其在肩关节领域的应用作一综述。
Abstract:
-

参考文献/References

[ 1 ] Phadke V, Braman JP, LaPrade RF, et al. Comparison of glenohumeral motion using different rotation sequences[J]. J Biomech, 2011, 44(4): 700-705.
[ 2 ] Hill AM, Bull AM, Dallalana RJ, et al. Glenohumeral motion: review of measurement techniques[J]. Knee Surg Sports Traumatol Arthrosc, 2007, 15(9): 1137-1143.
[ 3 ] Debski RE, McMahon PJ, Thompson WO, et al. A new dynamic testing apparatus to study glenohumeral joint motion[J]. J Biomech, 1995, 28(7): 869-874.
[ 4 ] van de Kleut ML, Yuan X, Athwal GS, et al. Validation of radiostereometric analysis in six degrees of freedom for use with reverse total shoulder arthroplasty[J]. J Biomech, 2018, 68: 126-131.
[ 5 ] Rosenquist B, Petersson A, Rune B, et al. Accuracy of the oblique lateral transcranial projection, lateral tomography, and X-ray stereometry in evaluation of mandibular condyle displacement[J]. J Oral Maxillofac Surg, 1988, 46(10): 862-867.
[ 6 ] Penny JO, Ding M, Ovesen O, et al. Radio-stereometric analysis in resurfacing hip arthroplasty[J]. J Orthop Translat, 2014, 2(4): 208-209.
[ 7 ] Muharemovic O, Troelsen A, Thomsen MG, et al. The effect of personalized versus standard patient protocols for radiostereometric analysis(RSA)[J]. Radiography(Lond), 2018, 24(2): e31-e36.
[ 8 ] Broberg JS, Yuan X, Teeter MG. Radiostereometric analysis using clinical radiographic views: development of a universal calibration object[J]. J Biomech, 2018, 73: 238-242.
[ 9 ] Lawrence RL, Braman JP, Staker JL, et al. Comparison of 3-dimensional shoulder complex kinematics in individuals with and without shoulder pain, part 2: glenohumeral joint[J]. J Orthop Sports Phys Ther, 2014, 44(9): 646-655.
[10] Miller RM, Popchak A, Vyas D, et al. Effects of exercise therapy for the treatment of symptomatic full-thickness supraspinatus tears on in vivo glenohumeral kinematics[J]. J Shoulder Elbow Surg, 2016, 25(4): 641-649.
[11] Streit JJ, Shishani Y, Greene ME, et al. Radiostereometric and radiographic analysis of glenoid component motion after total shoulder arthroplasty[J]. Orthopedics, 2015, 38(10): e891-e897.
[12] Nuttall D, Birch A, Haines JF, et al. Radiostereographic analysis of a shoulder surface replacement: does hydroxyapatite have a place?[J]. Bone Joint J, 2014, 96B(8): 1077-1081.
[13] Ten-Brinke B, Beumer A, Koenraadt KL, et al. The accuracy and precision of radiostereometric analysis in upper limb arthroplasty[J]. Acta Orthop, 2017, 88(3): 320-325.
[14] Muharemovic O, Troelsen A, Thomsen MG, et al. Design and evaluation of learning strategies for a group of radiographers in radiostereometric analysis(RSA)[J]. Radiography(Lond), 2017, 23(4): e80-e86.
[15] Madanat R, Moritz N, Vedel E, et al. Radio-opaque bioactive glass markers for radiostereometric analysis[J]. Acta Biomater, 2009, 5(9): 3497-3505.
[16] Patrona F, Chatzitofis A, Zarpalas D, et al. Motion analysis: action detection, recognition and evaluation based on motion capture data[J]. Patt Recog, 2018, 76: 612-622.
[17] Nagymáté G, Kiss RM. Motion capture system validation with surveying techniques[J]. Mater Today, 2018, 5(13): 26501-26506.
[18] Moeslund TB, Hilton A, Krüger V. A survey of advances in vision-based human motion capture and analysis[J]. Comput Vis Image Underst, 2006, 104(2/3): 90-126.
[19] Valevicius AM, Jun PY, Hebert JS, et al. Use of optical motion capture for the analysis of normative upper body kinematics during functional upper limb tasks: a systematic review[J]. J Electromyogr Kinesiol, 2018, 40: 1-15.
[20] Takayasu K, Yoshida K, Mishima T, et al. Upper body position analysis of different experience level surgeons during laparoscopic suturing maneuvers using optical motion capture[J]. Am J Surg, 2019, 217(1): 12-16.
[21] Mousavi SJ, Tromp R, Swann MC, et al. Between-session reliability of opto-electronic motion capture in measuring sagittal posture and 3-D ranges of motion of the thoracolumbar spine[J]. J Biomech, 2018, 79: 248-252.
[22] Choe N, Zhao H, Qiu S, et al. A sensor-to-segment calibration method for motion capture system based on low cost MIMU[J]. Measurement, 2019, 131: 490-500.
[23] Ogston JB, Ludewig PM. Differences in 3-dimensional shoulder kinematics between persons with multidirectional instability and asymptomatic controls[J]. Am J Sports Med, 2007, 35(8): 1361-1370.
[24] Rundquist PJ, Obrecht C, Woodruff L. Three-dimensional shoulder kinematics to complete activities of daily living[J]. Am J Phys Med Rehabil, 2009, 88(8): 623-629.
[25] Charbonnier C, Chagué S, Kolo FC, et al. Shoulder motion during tennis serve: dynamic and radiological evaluation based on motion capture and magnetic resonance imaging[J]. Int J Comput Assist Radiol Surg, 2015, 10(8): 1289-1297.
[26] Lädermann A, Chagué S, Kolo FC, et al. Kinematics of the shoulder joint in tennis players[J]. J Sci Med Sport, 2016, 19(1): 56-63.
[27] Maier MW, Kasten P, Niklasch M, et al. 3D motion capture using the HUX model for monitoring functional changes with arthroplasty in patients with degenerative osteoarthritis[J]. Gait Posture, 2014, 39(1): 7-11.
[28] Klotz MC, Kost L, Braatz F, et al. Motion capture of the upper extremity during activities of daily living in patients with spastic hemiplegic cerebral palsy[J]. Gait Posture, 2013, 38(1): 148-152.
[29] Mozingo JD, Akbari Shandiz M, Marquez FM, et al. Validation of imaging-based quantification of glenohumeral joint kinematics using an unmodified clinical biplane fluoroscopy system[J]. J Biomech, 2018, 71: 306-312.
[30] Englander ZA, Martin JT, Ganapathy PK, et al. Automatic registration of MRI-based joint models to high-speed biplanar radiographs for precise quantification of in vivo anterior cruciate ligament deformation during gait[J]. J Biomech, 2018, 81: 36-44.
[31] Akbari-Shandiz M, Lawrence RL, Ellingson AM, et al. MRI vs CT-based 2D-3D auto-registration accuracy for quantifying shoulder motion using biplane video-radiography[J]. J Biomech, 2019, 82: 375-380.
[32] Zhu Z, Massimini DF, Wang G, et al. The accuracy and repeatability of an automatic 2D-3D fluoroscopic image-model registration technique for determining shoulder joint kinematics[J]. Med Eng Phys, 2012, 34(9): 1303-1309.
[33] Pataky TC, Vanrenterghem J, Robinson MA. Bayesian inverse kinematics vs. least-squares inverse kinematics in estimates of planar postures and rotations in the absence of soft tissue artifact[J]. J Biomech, 2019, 82: 324-329.
[34] Bey MJ, Zauel R, Brock SK, et al. Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics[J]. J Biomech Eng, 2006, 128(4): 604-609.
[35] Akbari-Shandiz M, Mozingo JD, Holmes Iii DR, et al. An interpolation technique to enable accurate three-dimensional joint kinematic analyses using asynchronous biplane fluoroscopy[J]. Med Eng Phys, 2018, 60: 109-116.
[36] Kim DS, Lee B, Banks SA, et al. Comparison of dynamics in 3D glenohumeral position between primary dislocated shoulders and contralateral healthy shoulders[J]. J Orthop, 2017, 14(1): 195-200.
[37] Peltz CD, Baumer TG, Mende V, et al. Effect of arthroscopic stabilization on in vivo glenohumeral joint motion and clinical outcomes in patients with anterior instability[J]. Am J Sports Med, 2015, 43(11): 2800-2808.
[38] Kijima T, Matsuki K, Ochiai N, et al. In vivo 3-dimensional analysis of scapular and glenohumeral kinematics: comparison of symptomatic or asymptomatic shoulders with rotator cuff tears and healthy shoulders[J]. J Shoulder Elbow Surg, 2015, 24(11): 1817-1826.
[39] Dal-Maso F, Raison M, Lundberg A, et al. Glenohumeral translations during range-of-motion movements, activities of daily living, and sports activities in healthy participants[J]. Clin Biomech(Bristol, Avon), 2015, 30(9): 1002-1007.
[40] Baumer TG, Chan D, Mende V, et al. Effects of rotator cuff pathology and physical therapy on in vivo shoulder motion and clinical outcomes in patients with a symptomatic full-thickness rotator cuff tear[J]. Orthop J Sports Med, 2016, 4(9): 2325967116666506.
[41] Shortis MR, Remondino F, Ronsky J, et al. Rigorous accuracy assessment for 3D reconstruction using time-series Dual Fluoroscopy(DF)image pairs[J]. SPIE, 2017, 10332: 3.

备注/Memo

备注/Memo:
通信作者: 赵金忠 E-mail: zhaojinzhong@vip.163.com
更新日期/Last Update: 2019-08-09