索引超出了数组界限。
[ 1 ] Kubo T, Ueshima K, Saito M, et al. Clinical and basic research on steroid-induced osteonecrosis of the femoral head in Japan[J]. J Orthop Sci, 2016, 21(4): 407-413.
[ 2 ] Villa JC, Husain S, van der List JP, et al. Treatment of pre-collapse stages of osteonecrosis of the femoral head: a systematic review of randomized control trials[J]. HSS J, 2016, 12(3): 261-271.
[ 3 ] Zhang QY, Li ZR, Gao FQ, et al. Pericollapse stage of osteonecrosis of the femoral head: a last chance for joint preservation[J]. Chin Med J(Engl), 2018, 131(21): 2589-2598.
[ 4 ] Kerimaa P, Väänänen M, Ojala R, et al. MRI-guidance in percutaneous core decompression of osteonecrosis of the femoral head [J]. Eur Radiol, 2016, 26(4): 1180-1185.
[ 5 ] Han N, Li Z, Cai Z, et al. P-glycoprotein overexpression in bone marrow-derived multipotent stromal cells decreases the risk of steroid-induced osteonecrosis in the femoral head[J]. J Cell Mol Med, 2016, 20(11): 2173-2182.
[ 6 ] Zhu J, Tang H, Zhang Z, et al. Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs[J]. Int Immunopharmacol, 2017, 43: 236-242.
[ 7 ] Ambros V. The functions of animal microRNAs [J]. Nature, 2004, 431(7006): 350-355.
[ 8 ] Li L, Song Y, Shi X, et al. The landscape of miRNA editing in animals and its impact on miRNA biogenesis and targeting[J]. Genome Res, 2018, 28(1): 132-143.
[ 9 ] Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs[J]. Nat Genet, 2005, 37(7): 766-770.
[10] Yuan HF, Von Roemeling C, Gao HD, et al. Analysis of altered microRNA expression profile in the reparative interface of the femoral head with osteonecrosis[J]. Exp Mol Pathol, 2015, 98(2): 158-163.
[11] Wu X, Zhang Y, Guo X, et al. Identification of differentially expressed microRNAs involved in non-traumatic osteonecrosis through microRNA expression profiling[J]. Gene, 2015, 565(1): 22-29.
[12] Gu C, Xu Y, Zhang S, et al. MiR-27a attenuates adipogenesis and promotes osteogenesis in steroid-induced rat BMSCs by targeting PPARγ and GREM1[J]. Sci Rep, 2016, 6: 38491.
[13] Yue J, Wan F, Zhang Q, et al. Effect of glucocorticoids on miRNA expression spectrum of rat femoral head microcirculation endothelial cells[J]. Gene, 2018, 651: 126-133.
[14] Feng Z, Zheng W, Tang Q, et al. Fludarabine inhibits STAT1-mediated up-regulation of caspase-3 expression in dexamethasone-induced osteoblasts apoptosis and slows the progression of steroid-induced avascular necrosis of the femoral head in rats[J]. Apoptosis, 2017, 22(8): 1001-1012.
[15] Bian Y, Qian W, Li H, et al. Pathogenesis of glucocorticoid-induced avascular necrosis: a microarray analysis of gene expression in vitro[J]. Int J Mol Med, 2015, 36(3): 678-684.
[16] Wang B, Yu P, Li T, et al. MicroRNA expression in bone marrow mesenchymal stem cells from mice with steroid-induced osteonecrosis of the femoral head[J]. Mol Med Rep, 2015, 12(5): 7447-7454.
[17] Wang A, Ren M, Song Y, et al. MicroRNA expression profiling of bone marrow mesenchymal stem cells in steroid-induced osteonecrosis of the femoral head associated with osteogenesis[J]. Med Sci Monit, 2018, 24: 1813-1825.
[18] Jia J, Feng X, Xu W, et al. MiR-17-5p modulates osteoblastic differentiation and cell proliferation by targeting SMAD7 in non-traumatic osteonecrosis[J]. Exp Mol Med, 2014, 46: e107.
[19] Wei B, Wei W, Zhao B, et al. Long non-coding RNA HOTAIR inhibits miR-17-5p to regulate osteogenic differentiation and proliferation in non-traumatic osteonecrosis of femoral head[J]. PLoS One, 2017, 12(2): e0169097.
[20] Bai Y, Liu Y, Jin S, et al. Expression of microRNA-27a in a rat model of osteonecrosis of the femoral head and its association with TGF-β/Smad7 signalling in osteoblasts[J]. Int J Mol Med, 2019, 43(2): 850-860.
[21] Sun J, Wang Y, Li Y, et al. Downregulation of PPARγ by miR-548d-5p suppresses the adipogenic differentiation of human bone marrow mesenchymal stem cells and enhances their osteogenic potential[J]. J Transl Med, 2014, 12: 168.
[22] Hao C, Yang S, Xu W, et al. MiR-708 promotes steroid-induced osteonecrosis of femoral head, suppresses osteogenic differentiation by targeting SMAD3[J]. Sci Rep, 2016, 6: 22599.
[23] Zhao R, Li Y, Lin Z, et al. MiR-199b-5p modulates BMSC osteogenesis via suppressing GSK-3β/β-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2016, 477(4): 749-754.
[24] Liu G, Luo G, Bo Z, et al. Impaired osteogenic differentiation associated with connexin43/microRNA-206 in steroid-induced avascular necrosis of the femoral head[J]. Exp Mol Pathol, 2016, 101(1): 89-99.
[25] Zha X, Sun B, Zhang R, et al. Regulatory effect of microRNA-34a on osteogenesis and angiogenesis in glucocorticoid-induced osteonecrosis of the femoral head[J]. J Orthop Res, 2018, 36(1): 417-424.
[26] Kang H, Chen H, Huang P, et al. Glucocorticoids impair bone formation of bone marrow stromal stem cells by reciprocally regulating microRNA-34a-5p[J]. Osteoporos Int, 2016, 27(4): 1493-1505.
[27] Peng WX, Ye C, Dong WT, et al. MicroRNA-34a alleviates steroid-induced avascular necrosis of femoral head by targeting Tgif2 through OPG/RANK/RANKL signaling pathway[J]. Exp Biol Med(Maywood), 2017, 242(12): 1234-1243.
[28] Tian ZJ, Liu BY, Zhang YT, et al. MiR-145 silencing promotes steroid-induced avascular necrosis of the femoral head repair via upregulating VEGF[J]. Eur Rev Med Pharmacol Sci, 2017, 21(17): 3763-3769.
[29] Zhao JJ, Wu ZF, Wang L, et al. MicroRNA-145 mediates steroid-induced necrosis of the femoral head by targeting the OPG/RANK/RANKL signaling pathway[J]. PLoS One, 2016, 11(7): e0159805.
[30] Li P, Zhai P, Ye Z, et al. Differential expression of miR-195-5p in collapse of steroid-induced osteonecrosis of the femoral head[J]. Oncotarget, 2017, 8(26): 42638-42647.
[31] Wei JH, Luo QQ, Tang YJ, et al. Upregulation of microRNA-320 decreases the risk of developing steroid-induced avascular necrosis of femoral head by inhibiting CYP1A2 both in vivo and in vitro[J]. Gene, 2018, 660: 136-144.
[32] Arif M, Pandey R, Alam P, et al. MicroRNA-210-mediated proliferation, survival, and angiogenesis promote cardiac repair post myocardial infarction in rodents[J]. J Mol Med(Berl), 2017, 95(12): 1369-1385.
[33] Kerachian MA, Séguin C, Harvey EJ. Glucocorticoids in osteonecrosis of the femoral head: a new understanding of the mechanisms of action[J]. J Steroid Biochem Mol Biol, 2009, 114(3-5): 121-128.
[34] Yamasaki K, Nakasa T, Miyaki S, et al. Angiogenic microRNA-210 is present in cells surrounding osteonecrosis[J]. J Orthop Res, 2012, 30(8): 1263-1270.
[35] Yuan HF, Christina VR, Guo CA, et al. Involvement of microRNA-210 demethylation in steroid-associated osteonecrosis of the femoral head[J]. Sci Rep, 2016, 6: 20046.
[36] Wang X, Qian W, Wu Z, et al. Preliminary screening of differentially expressed circulating microRNAs in patients with steroidinduced osteonecrosis of the femoral head[J]. Mol Med Rep, 2014, 10(6): 3118-3124.
[37] Li Z, Jiang C, Li X, et al. Circulating microRNA signature of steroid-induced osteonecrosis of the femoral head[J]. Cell proliferation, 2018, 51(1): e12418.
[38] Wei B, Wei W. Identification of aberrantly expressed of serum microRNAs in patients with hormone-induced non-traumatic osteonecrosis of the femoral head[J]. Biomed Pharmacother, 2015, 75: 191-195.