索引超出了数组界限。
[ 1 ] Collins KH, Reimer RA, Seerattan RA,et al. Using diet-induced obesity to understand a metabolic subtype of osteoarthritis in rats[J]. Osteoarthritis Cartilage, 2015, 23(6): 957-965.
[ 2 ] Niedermair T, Kuhn V, Doranehgard F, et al. Absence of substance P and the sympathetic nervous system impact on bone structure and chondrocyte differentiation in an adult model of endochondral ossification[J]. Matrix Biol, 2014, 38: 22-35.
[ 3 ] Grässel S, Muschter D. Peripheral nerve fibers and their neurotransmitters in osteoarthritis pathology[J]. Int J Mol Sci, 2017, 18(5): 931.
[ 4 ] Grässel SG. The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology[J]. Arthritis Res Ther, 2014, 16(6): 485.
[ 5 ] Murakami K, Nakagawa H, Nishimura K, et al. Changes in peptidergic fiber density in the synovium of mice with collagenase-induced acute arthritis[J]. Can J Physiol Pharmacol, 2015, 93(6): 435-441.
[ 6 ] Dong T, Chang H, Zhang F, et al. Calcitonin gene-related peptide can be selected as a predictive biomarker on progression and prognosis of knee osteoarthritis[J]. Int Orthop, 2015, 39(6): 1237-1243.
[ 7 ] Wang H, Zhang X, He JY, et al. Increasing expression of substance P and calcitonin gene-related peptide in synovial tissue and fluid contribute to the progress of arthritis in developmental dysplasia of the hip[J]. Arthritis Res Ther, 2015, 17(1): 4.
[ 8 ] Li W, Long X, Jiang S, et al. Histamine and substance P in synovial fluid of patients with temporomandibular disorders[J]. J Oral Rehabil, 2015, 42(5): 363-369.
[ 9 ] Jiao K, Niu LN, Li QH, et al. β2-Adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis[J]. Sci Rep, 2015, 5: 12593.
[10] Aso K, Izumi M, Sugimura N, et al. Nociceptive phenotype alterations of dorsal root ganglia neurons innervating the subchondral bone in osteoarthritic rat knee joints[J]. Osteoarthritis Cartilage, 2016, 24(9): 1596-1603.
[11] Eitner A, Pester J, Nietzsche S, et al. The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium[J]. Osteoarthr Cartil, 2013, 21(9): 1383-1391.
[12] Lorenz J, Schäfer N, Bauer R, et al. Norepinephrine modulates osteoarthritic chondrocyte metabolism and inflammatory responses[J]. Osteoarthritis Cartilage, 2016, 24(2): 325-334
[13] Jiang W, Wang H, Li YS, et al. Role of vasoactive intestinal peptide in osteoarthritis[J]. J Biomed Sci, 2016, 23(1): 63.
[14] Wang L, Zhang L, Pan H, et al. Levels of neuropeptide Y in synovial fluid relate to pain in patients with knee osteoarthritis[J]. BMC Musculoskelet Disord, 2014, 15: 319.
[15] Muschter D, Schäfer N, Stangl H, et al. Sympathetic neurotransmitters modulate osteoclastogenesis and osteoclast activity in the context of collagen-induced arthritis[J]. PLoS One, 2015, 10(10): e0139726.
[16] Nakasa T, Ishikawa M, Takada T, et al. Attenuation of cartilage degeneration by calcitonin gene-related paptide receptor antagonist via inhibition of subchondral bone sclerosis in osteoarthritis mice[J]. J Orthop Res, 2016, 34(7): 1177-1184.
[17] Jenei-Lanzl Z, Grässel S, Pongratz G, et al. Norepinephrine inhibition of mesenchymal stem cell and chondrogenic progenitor cell chondrogenesis and acceleration of chondrogenic hypertrophy[J]. Arthritis Rheumatol, 2014, 66(9): 2472-2481.
[18] Elefteriou F, Campbell P, Ma Y. Control of bone remodeling by the peripheral sympathetic nervous system[J]. Calcif Tissue Int, 2014, 94(1): 140-151.
[19] Xiao J, Yu W, Wang X, et al. Correlation between neuropeptide distribution, cancellous bone microstructure and joint pain in postmenopausal women with osteoarthritis and osteoporosis[J]. Neuropeptides, 2016, 56: 97-104.
[20] Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis[J]. Nat Med, 2013, 19(6): 704-712.
[21] He H, Chai J, Zhang S, et al. CGRP may regulate bone metabolism through stimulating osteoblast differentiation and inhibiting osteoclast formation[J]. Mol Med Rep, 2016, 13(5): 3977-3984.
[22] Yoo YM, Kwag JH, Kim KH, et al. Effects of neuropeptides and mechanical loading on bone cell resorption in vitro[J]. Int J Mol Sci, 2014, 15(4): 5874-5883.
[23] Mlakar V, Jurkovic Mlakar S, Zupan J, et al. ADRA2A is involved in neuro-endocrine regulation of bone resorption[J]. J Cell Mol Med, 2015, 19(7): 1520-1529.
[24] Tanaka K, Hirai T, Kodama D, et al. α1B -Adrenoceptor signalling regulates bone formation through the up-regulation of CCAAT/enhancer-binding protein δ expression in osteoblasts[J]. Br J Pharmacol, 2016, 173(6): 1058-1069.
[25] Katsumura S, Ezura Y, Izu Y, et al. Beta Adrenergic receptor stimulation suppresses cell migration in association with cell cycle transition in osteoblasts: live imaging analyses based on FUCCI system[J]. J Cell Physiol, 2016, 231(2): 496-504.
[26] Yao Q, Liang H, Huang B, et al. Beta-adrenergic signaling affect osteoclastogenesis via osteocytic MLO-Y4 cells' RANKL production[J]. Biochem Biophys Res Commun, 2017, 488(4): 634-640.
[27] Muschter D, Göttl C, Vogel M, et al. Reactivity of rat bone marrow-derived macrophages to neurotransmitter stimulation in the context of collagen Ⅱ-induced arthritis[J]. Arthritis Res Ther, 2015, 17(1): 169.
[28] Juhász T, Helgadottir SL, Tamás A, et al. PACAP and VIP signaling in chondrogenesis and osteogenesis[J]. Peptides, 2015, 66: 51-57.
[29] Horsnell H, Baldock PA. Osteoblastic actions of the neuropeptide Y system to regulate bone and energy homeostasis[J]. Curr Osteoporos Rep, 2016, 14(1): 26-31.
[30] Khor EC, Yulyaningsih E, Driessler F, et al. The y6 receptor suppresses bone resorption and stimulates bone formation in mice via a suprachiasmatic nucleus relay[J]. Bone, 2016, 84: 139-147.