索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]钟京谕 姚伟武.骨关节炎中软骨及软骨下骨间信号交流[J].国际骨科学杂志,2019,04:207-210214.
点击复制

骨关节炎中软骨及软骨下骨间信号交流(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2019年04期
页码:
207-210214
栏目:
综述
出版日期:
2019-08-09

文章信息/Info

Title:
-
作者:
钟京谕 姚伟武
200050, 上海交通大学医学院附属同仁医院影像科
Author(s):
-
关键词:
骨关节炎 骨软骨单元 信号通路 软骨 软骨下骨
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2019.04.004
文献标识码:
-
摘要:
软骨及软骨下骨间信号交流在骨关节炎(OA)中有重要作用。转化生长因子(TGF)-β/骨形态发生蛋白(BMP)、Wnt、丝裂原活化蛋白激酶(MAPK)信号通路可维持软骨及软骨下骨正常形态与功能。OA中信号通路改变使软骨及软骨下骨稳态失衡,出现软骨基质破坏、骨囊肿和骨赘、骨小梁微骨折等病变,软骨与软骨下骨间的信号交流是OA进展的关键。该文总结了OA中TGF-β/BMP、Wnt、MAPK信号通路在软骨及软骨下骨间交流的机制和作用,以期为OA及其他骨关节疾病研究和治疗带来新的方向。
Abstract:
-

参考文献/References

[ 1 ] Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J]. Nat Rev Dis Primers, 2016, 2: 16072.
[ 2 ] Findlay DM, Kuliwaba JS. Bone-cartilage crosstalk: a conversation for understanding osteoarthritis[J]. Bone Res, 2016, 4: 16028.
[ 3 ] Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk[J]. Nat Rev Rheumatol, 2016, 12(11): 632-644.
[ 4 ] Zhang LZ, Zheng HA, Jiang Y, et al. Mechanical and biologic link between cartilage and subchondral bone in osteoarthritis[J]. Arthritis Care Res(Hoboken), 2012, 64(7): 960-967.
[ 5 ] 李广广, 郭杨, 戴国达, 等. 基于骨-软骨交互作用探析骨关节炎发病机制及治疗策略[J]. 中国组织工程研究, 2017, 21(24): 3924-3930.
[ 6 ] van der Kraan PM. The changing role of TGFβ in healthy, ageing and osteoarthritic joints[J]. Nat Rev Rheumatol, 2017, 13(3): 155-163.
[ 7 ] 张立智, 李双, 吴文美, 等. 转化生长因子β信号与软骨的发生、发育和维持[J]. 中华骨与关节外科杂志, 2018, 11(7): 556-560.
[ 8 ] van Caam A, Madej W, Garcia de Vinuesa A, et al. TGFβ1-induced SMAD2/3 and SMAD1/5 phosphorylation are both ALK5-kinase-dependent in primary chondrocytes and mediated by TAK1 kinase activity[J]. Arthritis Res Ther, 2017, 19(1): 112.
[ 9 ] Zhao L, Li G, Zhou GQ. SOX9 directly binds CREB as a novel synergism with the PKA pathway in BMP-2-induced osteochondrogenic differentiation[J]. J Bone Miner Res, 2009, 24(5): 826-836.
[10] van der Kraan PM. Differential role of transforming growth factor-beta in an osteoarthritic or a healthy joint[J]. J Bone Metab, 2018, 25(2): 65-72.
[11] Chavez RD, Coricor G, Perez J, et al. SOX9 protein is stabilized by TGF-β and regulates PAPSS2 mRNA expression in chondrocytes[J]. Osteoarthritis Cartilage, 2017, 25(2): 332-340.
[12] Kobayashi T, Lyons KM, McMahon AP, et al. BMP signaling stimulates cellular differentiation at multiple steps during cartilage development[J]. Proc Natl Acad Sci USA, 2005, 102(50): 18023-18027.
[13] Wang Q, Zhou C, Li X, et al. TGF-β1 promotes gap junctions formation in chondrocytes via Smad3/Smad4 signalling[J]. Cell Prolif, 2019, 52(2): e12544.
[14] van der Kraan PM. Age-related alterations in TGF beta signaling as a causal factor of cartilage degeneration in osteoarthritis[J]. Biomed Mater Eng, 2014, 24(1 Suppl): 75-80.
[15] Shen J, Li J, Wang B, et al. Deletion of the transforming growth factor β receptor type Ⅱ gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice[J]. Arthritis Rheum, 2013, 65(12): 3107-3119.
[16] Retting KN, Song B, Yoon BS, et al. BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation[J]. Development, 2009, 136(7): 1093-1104.
[17] Sharma AR, Jagga S, Lee SS, et al. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis[J]. Int J Mol Sci, 2013, 14(10): 19805-19830.
[18] Chen AL, Fang C, Liu C, et al. Expression of bone morphogenetic proteins, receptors, and tissue inhibitors in human fetal, adult, and osteoarthritic articular cartilage[J]. J Orthop Res, 2004, 22(6): 1188-1192.
[19] Blaney Davidson EN, Vitters EL, Bennink MB, et al. Inducible chondrocyte-specific overexpression of BMP2 in young mice results in severe aggravation of osteophyte formation in experimental OA without altering cartilage damage[J]. Ann Rheum Dis, 2015, 74(6): 1257-1264.
[20] Zheng L, Pi C, Zhang J, et al. Aberrant activation of latent transforming growth factor-β initiates the onset of temporomandibular joint osteoarthritis[J]. Bone Res, 2018, 6: 26.
[21] Crane JL, Cao X. Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling[J]. J Clin Invest, 2014, 124(2): 466-472.
[22] Lories RJ, Corr M, Lane NE. To Wnt or not to Wnt: the bone and joint health dilemma[J]. Nat Rev Rheumatol, 2013, 9(6): 328-339.
[23] Zhou Y, Wang T, Hamilton JL, et al. Wnt/β-catenin signaling in osteoarthritis and in other forms of arthritis[J]. Curr Rheumatol Rep, 2017, 19(9): 53.
[24] De Santis M, Di Matteo B, Chisari E, et al. The role of wnt pathway in the pathogenesis of oa and its potential therapeutic implications in the field of regenerative medicine[J]. Biomed Res Int, 2018, 2018: 7402947.
[25] Shi S, Man Z, Li WS, et al. Silencing of Wnt5a prevents interleukin-1β-induced collagen type Ⅱ degradation in rat chondrocytes[J]. Exp Ther Med, 2016, 12(5): 3161-3166.
[26] Chen L, Wu Y, Wu Y, et al. The inhibition of EZH2 ameliorates osteoarthritis development through the Wnt/β-catenin pathway[J]. Sci Rep, 2016, 6: 29176.
[27] 钟庆, 贾兆锋, 卢敏强, 等. 转化生长因子-β影响骨性关节炎发生发展作用机制的研究进展[J]. 国际骨科学杂志, 2018, 39(3): 129-132.
[28] Zhong L, Schivo S, Huang X, et al. Nitric oxide mediates crosstalk between interleukin 1β and WNT signaling in primary human chondrocytes by reducing dkk1 and frzb expression[J]. Int J Mol Sci, 2017, 18(11): E2491.
[29] Bouaziz W, Funck-Brentano T, Lin H, et al. Loss of sclerostin promotes osteoarthritis in mice via β-catenin-dependent and -independent Wnt pathways[J]. Arthritis Res Ther, 2015, 17: 24.
[30] Funck-Brentano T, Bouaziz W, Marty C, et al. Dkk-1-mediated inhibition of Wnt signaling in bone ameliorates osteoarthritis in mice[J]. Arthritis Rheumatol, 2014, 66(11): 3028-3039.
[31] Wang B, Jin H, Zhu M, et al. Chondrocyte β-catenin signaling regulates postnatal bone remodeling through modulation of osteoclast formation in a murine model[J]. Arthritis Rheumatol, 2014, 66(1): 107-120.
[32] Wang B, Jin H, Shu B, et al. Chondrocytes-specific expression of osteoprotegerin modulates osteoclast formation in metaphyseal bone[J]. Sci Rep, 2015, 5: 13667.
[33] van den Bosch MH, Gleissl TA, Blom AB, et al. Wnts talking with the TGF-β superfamily: WISPers about modulation of osteoarthritis[J]. Rheumatology(Oxford), 2016, 55(9): 1536-1547.
[34] 姜旭, 吴成爱, 王莹, 等. 膝关节骨性关节炎中WISP-1调控机制的研究[J]. 中国骨质疏松杂志, 2015, 21(5): 537-540.
[35] Ge HX, Zou FM, Li Y, et al. JNK pathway in osteoarthritis: pathological and therapeutic aspects[J]. J Recept Signal Transduct Res, 2017, 37(5): 431-436.
[36] Gu YT, Chen J, Meng ZL, et al. Research progress on osteoarthritis treatment mechanisms[J]. Biomed Pharmacother, 2017, 93: 1246-1252.
[37] Zhang Y, Pizzute T, Pei M. A review of crosstalk between MAPK and Wnt signals and its impact on cartilage regeneration[J]. Cell Tissue Res, 2014, 358(3): 633-649.
[38] Sun HY, Hu KZ, Yin ZS. Inhibition of the p38-MAPK signaling pathway suppresses the apoptosis and expression of proinflammatory cytokines in human osteoarthritis chondrocytes[J]. Cytokine, 2017, 90: 135-143.
[39] Shi J, Zhang C, Yi Z, et al. Explore the variation of MMP3, JNK, p38 MAPKs, and autophagy at the early stage of osteoarthritis[J]. IUBMB Life, 2016, 68(4): 293-302.
[40] Liu Z, Cai H, Zheng X, et al. The involvement of mutual inhibition of ERK and mTOR in PLCγ1-Mediated MMP-13 expression in human osteoarthritis chondrocytes[J]. Int J Mol Sci, 2015, 16(8): 17857-17869.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金面上项目(81771790)
通信作者: 姚伟武 E-mail: yaoweiwuhuan@163.com
更新日期/Last Update: 2019-08-09