索引超出了数组界限。
[ 1 ] Nohara A, Kawakami N, Tsuji T, et al. Intervertebral disc degeneration during postoperative follow-up more than 10 years after corrective surgery in idiopathic scoliosis: comparison between patients with and without surgery[J]. Spine(Phila Pa 1976), 2018, 43(4): 255-261.
[ 2 ] Ökmen K, Ökmen BM. The efficacy of interlaminar epidural steroid administration in multilevel intervertebral disc disease with chronic low back pain: a randomized, blinded, prospective study[J]. Spine J, 2017, 17(2): 168-174.
[ 3 ] Wan S, Borland S, Richardson SM, et al. Self-assembling peptide hydrogel for intervertebral disc tissue engineering[J]. Acta Biomaterialia, 2016, 46: 29-40.
[ 4 ] Xin L, Zhang C, Zhong F, et al. Minimal invasive annulotomy for induction of disc degeneration and implantation of poly(lactic-co-glycolic acid)(PLGA)plugs for annular repair in a rabbit model[J]. Eur J Med Res, 2016, 21: 7.
[ 5 ] Fuller KP, Gaspar D, Delgado LM, et al. Influence of porosity and pore shape on structural, mechanical and biological properties of poly-caprolactone electro-spun fibrous scaffolds[J]. Nanomedicine(Lond), 2016, 11(9): 1031-1040.
[ 6 ] Baiguera S, Del Gaudio C, Lucatelli E, et al. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering[J]. Biomaterials, 2014, 35(4): 1205-1214.
[ 7 ] Zhu C, Li J, Liu C, et al. Modulation of the gene expression of annulus fibrosus-derived stem cells using poly(ether carbonate urethane)urea scaffolds of tunable elasticity[J]. Acta Biomater, 2016, 29: 228-238.
[ 8 ] Nesti LJ, Li WJ, Shanti RM, et al. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold(HANFS)amalgam[J]. Tissue Eng Part A, 2008, 14(9): 1527-1537.
[ 9 ] Nerurkar NL, Han W, Mauck RL, et al. Homologous structure-function relationships between native fibrocartilage and tissue engineered from MSC-seeded nanofibrous scaffolds[J]. Biomaterials, 2011, 32(2): 461-468.
[10] Ma J, He Y, Liu X, et al. A novel electrospun-aligned nanoyarn/three-dimensional porous nanofibrous hybrid scaffold for annulus fibrosus tissue engineering[J]. Int J Nanomedicine, 2018, 13: 1553-1567.
[11] Han SK, Chen CW, Wierwille J, et al. Three dimensional mesoscale analysis of translamellar cross-bridge morphologies in the annulus fibrosus using optical coherence tomography[J]. J Orthop Res, 2015, 33(3): 304-311.
[12] Vergari C, Mansfield J, Meakin JR, et al. Lamellar and fibre bundle mechanics of the annulus fibrosus in bovine intervertebral disc[J]. Acta Biomaterialia, 2016, 37: 14-20.
[13] Lazebnik M, Singh M, Glatt P, et al. Biomimetic method for combining the nucleus pulposus and annulus fibrosus for intervertebral disc tissue engineering[J]. J Tissue Eng Regen Med, 2011, 5(8): e179-e187.
[14] Koepsell L, Remund T, Bao J, et al. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers[J]. J Biomed Mater Res A, 2011, 99(4): 564-575.
[15] Koepsell L, Zhang L, Neufeld D, et al. Electrospun nanofibrous polycaprolactone scaffolds for tissue engineering of annulus fibrosus[J]. Macromol Biosci, 2011, 11(3): 391-399.
[16] Liu C, Zhu C, Li J, et al. The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells[J]. Bone Res, 2015, 3: 15012.
[17] Nerurkar NL, Sen S, Huang AH, et al. Engineered disc-like angle-ply structures for intervertebral disc replacement[J]. Spine(Phila Pa 1976), 2010, 35(8): 867-873.
[18] Martin JT, Milby AH, Chiaro JA, et al. Translation of an engineered nanofibrous disc-like angle-ply structure for intervertebral disc replacement in a small animal model[J]. Acta Biomater, 2014, 10(6): 2473-2481.
[19] Elmasry S, Asfour S, de Rivero Vaccari JP, et al. A computational model for investigating the effects of changes in bioavailability of insulin-like growth factor-1 on the homeostasis of the intervertebral disc[J]. Comput Biol Med, 2016, 78: 126-137.
[20] Chou PH, Wang ST, Ma HL, et al. Development of a two-step protocol for culture expansion of human annulus fibrosus cells with TGF-β1 and FGF-2[J]. Stem Cell Res Ther, 2016, 7(1): 89.
[21] Blanquer SB, Gebraad AW, Miettinen S, et al. Differentiation of adipose stem cells seeded towards annulus fibrosus cells on a designed poly(trimethylene carbonate)scaffold prepared by stereolithography[J]. J Tissue Eng Regen Med, 2017, 11(10): 2752-2762.
[22] Martin JT, Gullbrand SE, Mohanraj B, et al. Optimization of preculture conditions to maximize the in vivo performance of cell-seeded engineered intervertebral discs[J]. Tissue Eng Part A, 2017, 23(17-18): 923-934.
[23] Vadalà G, Mozetic P, Rainer A, et al. Bioactive electrospun scaffold for annulus fibrosus repair and regeneration[J]. Eur Spine J, 2012, 21(Suppl 1): S20-S26.
[24] Sahoo S, Ang LT, Goh JC, et al. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications[J]. J Biomed Mater Res A, 2010, 93(4): 1539-1550.
[25] Guo Q, Liu C, Li J, et al. Gene expression modulation in TGF-β3-mediated rabbit bone marrow stem cells using electrospun scaffolds of various stiffness[J]. J Cell Mol Med, 2015, 19(7): 1582-1592.
[26] Henry JJ, Yu J, Wang A, et al. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering[J]. Biofabrication, 2017, 9(3): 035007.