索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]谢晓亮 李玉梅 朱海霞 樊天佑.Wnt/β-catenin信号转导通路对骨肉瘤癌干细胞的调节作用[J].国际骨科学杂志,2019,03:127-130.
点击复制

Wnt/β-catenin信号转导通路对骨肉瘤癌干细胞的调节作用(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2019年03期
页码:
127-130
栏目:
综述
出版日期:
2019-06-20

文章信息/Info

Title:
-
作者:
谢晓亮 李玉梅 朱海霞 樊天佑
200071, 上海中医药大学附属巿中医医院骨伤科
Author(s):
-
关键词:
Wnt/β-catenin信号转导通路 骨肉瘤 癌干细胞 研究进展
Keywords:
-
分类号:
-
DOI:
-
文献标识码:
-
摘要:
部分骨肉瘤患者对化疗缺乏有效反应,其耐药机理目前尚不明确。骨肉瘤的难治性、复发转移和抗药性与癌干细胞有关。癌干细胞可通过细胞表面特异性标记物、侧群细胞、细胞球形成等进行辨别。多项研究发现,骨肉瘤中存在Wnt/β-catenin信号转导通路的异常表达。通过调控该信号转导通路可改变骨肉瘤癌干细胞的特性,抑制骨肉瘤的增殖、复发和远处转移。该文对Wnt/β-catenin信号转导通路对骨肉瘤癌干细胞的调节作用及治疗前景作一综述。
Abstract:
-

参考文献/References

[ 1 ] Bertoni F, Unni KK, McLeod RA, et al. Osteosarcoma resembling osteoblastoma[J]. Cancer, 1985, 55(2): 416-426.
[ 2 ] Unni KK, Dahlin DC, McLeod RA, et al. Intraosseous well-differentiated osteosarcoma[J]. Cancer, 1977, 40(3): 1337-1347.
[ 3 ] Shaikh AB, Li F, Li M, et al. Present advances and future perspectives of molecular targeted therapy for osteosarcoma[J]. Int J Mol Sci, 2016, 17(4): 506.
[ 4 ] Harrison DJ, Geller DS, Gill JD, et al. Current and future therapeutic approaches for osteosarcoma[J]. Expert Rev Anticancer Ther, 2018, 18(1): 39-50.
[ 5 ] Durfee RA, Mohammed M, Luu HH. Review of osteosarcoma and current management[J]. Rheumatol Ther, 2016, 3(2): 221-243.
[ 6 ] Yang M, Yan M, Zhang R, et al. Side population cells isolated from human osteosarcoma are enriched with tumor-initiating cells[J]. Cancer Sci, 2011, 102(10): 1774-1781.
[ 7 ] Brown HK, Schiavone K, Gouin F, et al. Biology of bone sarcomas and new therapeutic developments [J]. Calcif Tissue Int, 2018, 102(2): 174-195.
[ 8 ] Zhang GF, Li CX, Liu ZQ, et al. Cancer stem cell targets: a review[J]. Eur Rev Med Pharmacol Sci, 2016, 20(10): 2045-2051.
[ 9 ] Kharkar PS. Cancer stem cell(CSC)inhibitors: a review of recent patents(2012-2015)[J]. Expert Opin Ther Pat, 2017, 27(7): 753-761.
[10] Lei Y, Zhang D, Yu J, et al. Targeting autophagy in cancer stem cells as an anticancer therapy[J]. Cancer Lett, 2017, 393: 33-39.
[11] Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis [J]. J Clin Pharmacol, 2005, 45(8): 872-877.
[12] Li S, Li Q. Cancer stem cells and tumor metastasis(Review)[J]. Int J Oncol, 2014, 44(6): 1806-1812.
[13] Abarrategi A, Tornin J, Martinez-Cruzado L, et al. Osteosarcoma: cells-of-origin, cancer stem cells, and targeted therapies[J]. Stem Cells Int, 2016, 2016: 3631764.
[14] Takebe N, Harris PJ, Warren RQ, et al. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways[J]. Nat Rev Clin Oncol, 2011, 8(2): 97-106.
[15] Naveen SV, Kalaivani K. Cancer stem cells and evolving novel therapies: a paradigm shift[J]. Stem Cell Investig, 2018, 5: 4.
[16] Basu-Roy U, Basilico C, Mansukhani A. Perspectives on cancer stem cells in osteosarcoma[J]. Cancer Lett, 2013, 338(1): 158-167.
[17] Siclari VA, Qin L. Targeting the osteosarcoma cancer stem cell[J]. J Orthop Surg Res, 2010, 5: 78.
[18] Yan GN, Lv YF, Guo QN. Advances in osteosarcoma stem cell research and opportunities for novel therapeutic targets[J]. Cancer Lett, 2016, 370(2): 268-274.
[19] Tirino V, Desiderio V, d'Aquino R, et al. Detection and characterization of CD133+ cancer stem cells in human solid tumours[J]. PLoS One, 2008, 3(10): e3469.
[20] Nunik HS, Sjahjenny M. Analysis of CD133 and CXCR4 exspression in osteosarcoma with metastasis[J]. Pathology, 2016, 48(Suppl 1): S144-S145.
[21] Xie Y, Huang J, Wu M, et al. Expression of CD133 protein in osteosarcoma and its relationship with the clinicopathological features and prognosis[J]. J Cancer Res Ther, 2018, 14(4): 892-895.
[22] Fujiwara T, Katsuda T, Hagiwara K, et al. Clinical relevance and therapeutic significance of microRNA-133a expression profiles and functions in malignant osteosarcoma-initiating cells[J]. Stem Cells, 2014, 32(4): 959-973.
[23] Adhikari AS, Agarwal N, Wood BM, et al. CD117 and Stro-1 identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance[J]. Cancer Res, 2010, 70(11): 4602-4612.
[24] He A, Yang X, Huang Y, et al. CD133(+)CD44(+)Cells mediate in the lung metastasis of osteosarcoma[J]. J Cell Biochem, 2015, 116(8): 1719-1729.
[25] Murase M, Kano M, Tsukahara T, et al. Side population cells have the characteristics of cancer stem-like cells/cancer-initiating cells in bone sarcomas[J]. Br J Cancer, 2009, 101(8): 1425-1432.
[26] Brown HK, Tellez-Gabriel M, Heymann D. Cancer stem cells in osteosarcoma[J]. Cancer Lett, 2017, 386: 189-195.
[27] Gibbs CP, Kukekov VG, Reith JD, et al. Stem-like cells in bone sarcomas: implications for tumorigenesis[J]. Neoplasia, 2005, 7(11): 967-976.
[28] Fujii H, Honoki K, Tsujiuchi T, et al. Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines[J]. Int J Oncol, 2009, 34(5): 1381-1386.
[29] Martins-Neves SR, Lopes ÁO, do Carmo A, et al. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line[J]. BMC Cancer, 2012, 12: 139.
[30] Yi XJ, Zhao YH, Qiao LX, et al. Aberrant Wnt/β-catenin signaling and elevated expression of stem cell proteins are associated with osteosarcoma side population cells of high tumorigenicity[J]. Mol Med Rep, 2015, 12(4): 5042-5048.
[31] Martins-Neves SR, Paiva-Oliveira DI, Fontes-Ribeiro C, et al. IWR-1, a tankyrase inhibitor, attenuates Wnt/β-catenin signaling in cancer stem-like cells and inhibits in vivo the growth of a subcutaneous human osteosarcoma xenograft[J]. Cancer Lett, 2018, 414: 1-15.
[32] Basu-Roy U, Seo E, Ramanathapuram L, et al. Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas[J]. Oncogene, 2012, 31(18):2270-2282.
[33] Matushansky I, Hernando E, Socci ND, et al. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway[J]. J Clin Invest, 2007, 117(11): 3248-3257.
[34] Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer[J]. Nat Rev Cancer, 2013, 13(1): 11-26.
[35] Martins-Neves SR, Paiva-Oliveira DI, Wijers-Koster PM, et al. Chemotherapy induces stemness in osteosarcoma cells through activation of Wnt/β-catenin signaling[J]. Cancer Lett, 2016, 370(2): 286-295.
[36] Rubin EM, Guo Y, Tu K, et al. Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma[J]. Mol Cancer Ther, 2010, 9(3): 731-741.
[37] Wang DZ, Gao JF, Jing SF, et al. Antitumor effect of docetaxel in osteosarcoma by the inhibition of wnt signal channel[J]. Drug Res(Stuttg), 2015, 65(11): 597-601.
[38] Krause U, Ryan DM, Clough BH, et al. An unexpected role for a Wnt-inhibitor: dickkopf-1 triggers a novel cancer survival mechanism through modulation of aldehyde-dehydrogenase-1 activity[J]. Cell Death Dis, 2014, 5(2): e1093.
[39] Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6): 985-999.
[40] Karner CM, Long F. Wnt signaling and cellular metabolism in osteoblasts[J]. Cell Mol Life Sci, 2017, 74(9): 1649-1657.
[41] Kobayashi Y, Uehara S, Udagawa N, et al. Regulation of bone metabolism by Wnt signals[J]. J Biochem, 2016, 159(4): 387-392.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金(81573995)、国家自然科学基金青年科学基金(81403412)
作者单位: 200071, 上海中医药大学附属巿中医医院骨伤科
通信作者: 樊天佑 E-mail: fantianyou365@hotmail.com
更新日期/Last Update: 2019-06-20