索引超出了数组界限。
[1] 邓银栓, 高秋明, 甄平, 等. 副舟骨源性平足症的手术治疗策略[J]. 中国骨伤, 2015, 28(2): 188-194.
[2] 俞光荣, 于涛, 杨云峰, 等. 单纯内侧入路距下关节融合治疗平足症的效果[J]. 中华骨与关节外科杂志, 2015(6): 512-516.
[3] 黄萍, 钱念东, 齐进, 等. 拇外翻发病危险因素与足底压力特征[J]. 中国组织工程研究, 2016, 20(42): 6351-6356.
[4] Natsakis T, Burg J, Dereymaeker G, et al. Extrinsic muscle forces affect ankle loading before and after total ankle arthroplasty[J]. Clin Orthop Relat Res, 2015, 473(9): 3028-3037.
[5] Mcclinton S, Collazo C, Vincent E, et al. Impaired foot plantar flexor muscle performance in individuals with plantar heel pain and association with foot orthosis use[J]. J Orthop Sports Phys Ther, 2016, 46(8): 681-688.
[6] Van Dijk PA, Madirolas FX, Carrera A, et al. Peroneal tendons well vascularized: results from a cadaveric study[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(4): 1140-1147.
[7] Zhang XB, Wu H, Zhang LG, et al. Calcaneal varus angle change in normal calcaneus: a three-dimensional finite element analysis[J]. Med Biol Eng Comput, 2017, 55(3): 429-437.
[8] Wong DW, Niu W, Wang Y, et al. Finite element analysis of foot and ankle impact injury: risk evaluation of calcaneus and talus fracture[J]. PLoS One, 2016, 11(4): e0154435.
[9] Telfer S, Erdemir A, Woodburn J, et al. Simplified versus geometrically accurate models of forefoot anatomy to predict plantar pressures: a finite element study[J]. J Biomech, 2016, 49(2): 289-294.
[10] Hannah I, Harland A, Price D, et al. Evaluation of a kinematically-driven finite element footstrike model[J]. J Appl Biomech, 2016, 32(3): 301-305.
[11] Maeda S, Niki H, Hirano T, et al. Safe Zone for the plantar portal: a cadaveric study[J]. Foot Ankle Int, 2016, 37(2): 210-217.
[12] Yañez Arauz JM, Del Vecchio JJ, Codesido M, et al. Minimally invasive akin osteotomy and lateral release: anatomical structures at risk-A cadaveric study[J]. Foot(Edinb), 2016, 27: 32-35.
[13] Lundgren P, Nester C, Liu A, et al. Invasive in vivo measurement of rear-, mid- and forefoot motion during walking[J]. Gait Posture, 2008, 28(1): 93-100.
[14] Dullaert K, Hagen J, Klos K, et al. The influence of the peroneus longus muscle on the foot under axial loading: a CT evaluated dynamic cadaveric model study[J]. Clin Biomech(Bristol, Avon), 2016, 34: 7-11.
[15] Sharkey NA, Hamel AJ. A dynamic cadaver model of the stance phase of gait: performance characteristics and kinetic validation[J]. Clin Biomech(Bristol, Avon), 1998, 13(6): 420-433.
[16] Aubin PM, Cowley MS, Ledoux WR. Gait simulation via a 6-DOF parallel robot with iterative learning control[J]. IEEE Trans Biomed Eng, 2008, 55(3): 1237-1240.
[17] Hurschler C, Emmerich J, Wülker N. In vitro simulation of stance phase gait part Ⅰ: Model verification[J]. Foot Ankle Int, 2003, 24(8): 614-622.
[18] Nester CJ, Liu AM, Ward E, et al. In vitro study of foot kinematics using a dynamic walking cadaver model[J]. J Biomech, 2007, 40(9): 1927-1937.
[19] Lee DG, Davis BL. Assessment of the effects of diabetes on midfoot joint pressures using a robotic gait simulator[J]. Foot Ankle Int, 2009, 30(8): 767-772.
[20] Kirane YM, Michelson JD, Sharkey NA. Evidence of isometric function of the flexor hallucis longus muscle in normal gait[J]. J Biomech, 2008, 41(9): 1919-1928.
[21] Wülker N, Hurschler C, Emmerich J. In vitro simulation of stance phase gait part Ⅱ: simulated anterior tibial tendon dysfunction and potential compensation[J]. Foot Ankle Int, 2003, 24(8): 623-629.
[22] Kim KJ, Kitaoka HB, Luo ZP. In vitro simulation of the stance phase in human gait[J]. J Musculoskelet Res, 2001, 5(2): 113-122.
[23] Aubin PM, Whittaker E, Ledoux WR. A robotic cadaveric gait simulator with fuzzy logic vertical ground reaction force control[J]. IEEE Trans Robotics, 2012, 28(1): 246-255.
[24] Noble LD Jr, Colbrunn RW, Lee DG, et al. Design and validation of a general purpose robotic testing system for musculoskeletal applications[J]. J Biomech Eng, 2010, 132(2): 025001.
[25] Peeters K, Natsakis T, Burg J, et al. An in vitro approach to the evaluation of foot-ankle kinematics: performance evaluation of a custom-built gait simulator[J]. Proc Inst Mech Eng H, 2013, 227(9): 955-967.
[26] Baxter JR, Sturnick DR, Demetracopoulos CA, et al. Cadaveric gait simulation reproduces foot and ankle kinematics from population-specific inputs[J]. J Orthop Res, 2016, 34(9): 1663-1668.
[27] Shultz R, Kedgley AE, Jenkyn TR. Quantifying skin motion artifact error of the hindfoot and forefoot marker clusters with the optical tracking of a multi-segment foot model using single-plane fluoroscopy[J]. Gait Posture, 2011, 34(1): 44-48.
[28] Malcolm P, Quesada RE, Caputo JM, et al. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking[J]. J Neuroeng Rehabil, 2015, 12: 21.
[29] Zelik KE, Takahashi KZ, Sawicki GS. Six degree-of-freedom analysis of hip, knee, ankle and foot provides updated understanding of biomechanical work during human walking[J]. J Exp Biol, 2015, 218(Pt 6): 876-886.
[30] McKeon PO, Hertel J, Bramble D, et al. The foot core system: a new paradigm for understanding intrinsic foot muscle function[J]. Br J Sports Med, 2015, 49(5): 290.
[31] Zhang M, Davies TC, Zhang Y, et al. A real-time computational model for estimating kinematics of ankle ligaments[J]. Comput Methods Biomech Biomed Engin, 2016, 19(8): 835-844.
[32] Knutsen AR, Avoian T, Sangiorgio SN, et al. How do different anterior tibial tendon transfer techniques influence forefoot and hindfoot motion?[J]. Clin Orthop Relat Res, 2015, 473(5): 1737-1743.
[33] Khassetarash A, Hassannejad R. Towards optimal design of sport footwear based on muscle activity and minimum loading rate using simplified model[J]. Proc Inst Mech Eng H, 2015, 229(8): 537-548.
[34] Zhang M, Davies TC, Nandakumar A, et al. A novel assessment technique for measuring ankle orientation and stiffness[J]. J Biomech, 2015, 48(12): 3527-3529.
[35] Shultz AH, Lawson BE, Goldfarb M. Variable cadence walking and ground adaptive standing with a powered ankle prosthesis[J]. IEEE Trans Neural Syst Rehabil Eng, 2016, 24(4): 495-505.