索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]刘威,于晓巍.天然来源可注射水凝胶修复软骨缺损的研究进展[J].国际骨科学杂志,2018,02:81-84.
点击复制

天然来源可注射水凝胶修复软骨缺损的研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2018年02期
页码:
81-84
栏目:
综述
出版日期:
2018-04-01

文章信息/Info

Title:
-
作者:
刘威于晓巍
200233, 上海交通大学附属第六人民医院骨科
Author(s):
-
关键词:
可注射 水凝胶 组织工程 软骨修复
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2018.02.005
文献标识码:
A
摘要:
组织工程在软骨缺损修复中发挥重要作用,细胞、支架和生长因子是其3个基本要素。可注射水凝胶修复软骨缺损的优势在于,其交联前形状不固定,可填充不规则缺损,随后通过物理或化学交联使其凝固成固态水凝胶,以使缺损填充“严丝合缝”。天然材料凭借其类似于细胞外基质成分、可模拟机体组织微环境及有利于维持软骨细胞表型等特性成为软骨缺损修复支架的主流材料。该文就天然来源可注射水凝胶的研究进展作一综述。
Abstract:
-

参考文献/References

[1] Yao X, Peng R, Ding J. Cell-material interactions revealed via material techniques of surface patterning[J]. Adv Mater, 2013, 25(37): 5257-5286.
[2] Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications[J]. Chem Soc Rev, 2012, 41(6): 2193-2221.
[3] Moreira Teixeira LS, Bijl S, Pully VV, et al. Self-attaching and cell-attracting in-situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair[J]. Biomaterials, 2012, 33(11): 3164-3174.
[4] Izumikawa T, Sato B, Kitagawa H. Chondroitin sulfate is indispensable for pluripotency and differentiation of mouse embryonic stem cells[J]. Sci Rep, 2014, 4: 3701.
[5] Chen F, Yu S, Liu B, et al. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering[J]. Sci Rep, 2016, 6: 20014.
[6] Ha CW, Park YB, Chung JY, et al. Cartilage repair using composites of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel in a minipig model[J]. Stem Cells Transl Med, 2015, 4(9): 1044-1051.
[7] Liu X, Yang Y, Niu X, et al. An in situ photocrosslinkable platelet rich plasma - complexed hydrogel glue with growth factor controlled release ability to promote cartilage defect repair[J]. Acta Biomater, 2017, 62: 179-187.
[8] Pulkkinen HJ, Tiitu V, Valonen P, et al. Repair of osteochondral defects with recombinant human type Ⅱ collagen gel and autologous chondrocytes in rabbit[J]. Osteoarthritis Cartilage, 2013, 21(3): 481-490.
[9] Almeida HV, Eswaramoorthy R, Cunniffe GM, et al. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration[J]. Acta Biomater, 2016, 36: 55-62.
[10] Lansdown AB. Calcium: a potential central regulator in wound healing in the skin[J]. Wound Repair Regen, 2002, 10(5): 271-285.
[11] Endres M, Wenda N, Woehlecke H, et al. Microencapsulation and chondrogenic differentiation of human mesenchymal progenitor cells from subchondral bone marrow in Ca-alginate for cell injection[J]. Acta Biomater, 2010, 6(2): 436-444.
[12] Grande DA, Halberstadt C, Naughton G, et al. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts[J]. J Biomed Mater Res, 1997, 34(2): 211-220.
[13] Adolphe M, Demignot S. Versatility of differentiated functions of cultured joint chondrocytes. Eventual usefulness in treatment[J]. Bull Acad Natl Med, 2000, 184(3): 593-600.
[14] Mathe Z, Bucher P, Bosco D, et al. Short-term immunosuppression reduces fibrotic cellular infiltration around barium-M-alginate microbeads injected intraportally[J]. Transplant Proc, 2004, 36(4): 1199-1200.
[15] Li Y, Meng H, Liu Y, et al. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering[J]. ScientificWorldJournal, 2015, 2015: 685690.
[16] Yan J, Yang L, Wang G, et al. Biocompatibility evaluation of chitosan-based injectable hydrogels for the culturing mice mesenchymal stem cells in vitro[J]. J Biomater Appl, 2010, 24(7): 625-637.
[17] Zhao M, Chen Z, Liu K, et al. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes[J]. J Zhejiang Univ Sci B, 2015, 16(11): 914-923.
[18] Du Z, Zhang Y, Lang M. Synthesis of functionalized Pluronic-b-poly(ε-caprolactone)and the comparative study of their pendant groups on the cellular internalization behavior[J]. J Mater Sci Mater Med, 2015, 26(4): 171.
[19] Liu H, Xiao Y, Xu H, et al. Reversible thermo-sensitivity induced from varying the Hydrogen bonding between the side residues of rationally designed polypeptides[J]. Chem Commun(Camb), 2015, 51(50): 10174-10177.
[20] Rowland CR, Lennon DP, Caplan AI, et al. The effects of crosslinking of scaffolds engineered from cartilage ECM on the chondrogenic differentiation of MSCs[J]. Biomaterials, 2013, 34(23): 5802-5812.
[21] Benders KE, van Weeren PR, Badylak SF, et al. Extracellular matrix scaffolds for cartilage and bone regeneration[J]. Trends Biotechnol, 2013, 31(3): 169-176.
[22] Fatimi A, Tassin JF, Quillard S, et al. The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices[J]. Biomaterials, 2008, 29(5): 533-543.
[23] Xu Y, Zhang J, Ma Y, et al. The role of adipose-derived stromal cells and hydroxypropylmethylcellulose in engineering cartilage tissue in vivo[J]. Cytotechnology, 2014, 66(5): 779-790.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金(81572155)
通讯作者: 于晓巍 E-mail: yuxw@sjtu.edu.cn
更新日期/Last Update: 2018-04-01