索引超出了数组界限。
[1] Yao X, Peng R, Ding J. Cell-material interactions revealed via material techniques of surface patterning[J]. Adv Mater, 2013, 25(37): 5257-5286.
[2] Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications[J]. Chem Soc Rev, 2012, 41(6): 2193-2221.
[3] Moreira Teixeira LS, Bijl S, Pully VV, et al. Self-attaching and cell-attracting in-situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair[J]. Biomaterials, 2012, 33(11): 3164-3174.
[4] Izumikawa T, Sato B, Kitagawa H. Chondroitin sulfate is indispensable for pluripotency and differentiation of mouse embryonic stem cells[J]. Sci Rep, 2014, 4: 3701.
[5] Chen F, Yu S, Liu B, et al. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering[J]. Sci Rep, 2016, 6: 20014.
[6] Ha CW, Park YB, Chung JY, et al. Cartilage repair using composites of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel in a minipig model[J]. Stem Cells Transl Med, 2015, 4(9): 1044-1051.
[7] Liu X, Yang Y, Niu X, et al. An in situ photocrosslinkable platelet rich plasma - complexed hydrogel glue with growth factor controlled release ability to promote cartilage defect repair[J]. Acta Biomater, 2017, 62: 179-187.
[8] Pulkkinen HJ, Tiitu V, Valonen P, et al. Repair of osteochondral defects with recombinant human type Ⅱ collagen gel and autologous chondrocytes in rabbit[J]. Osteoarthritis Cartilage, 2013, 21(3): 481-490.
[9] Almeida HV, Eswaramoorthy R, Cunniffe GM, et al. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration[J]. Acta Biomater, 2016, 36: 55-62.
[10] Lansdown AB. Calcium: a potential central regulator in wound healing in the skin[J]. Wound Repair Regen, 2002, 10(5): 271-285.
[11] Endres M, Wenda N, Woehlecke H, et al. Microencapsulation and chondrogenic differentiation of human mesenchymal progenitor cells from subchondral bone marrow in Ca-alginate for cell injection[J]. Acta Biomater, 2010, 6(2): 436-444.
[12] Grande DA, Halberstadt C, Naughton G, et al. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts[J]. J Biomed Mater Res, 1997, 34(2): 211-220.
[13] Adolphe M, Demignot S. Versatility of differentiated functions of cultured joint chondrocytes. Eventual usefulness in treatment[J]. Bull Acad Natl Med, 2000, 184(3): 593-600.
[14] Mathe Z, Bucher P, Bosco D, et al. Short-term immunosuppression reduces fibrotic cellular infiltration around barium-M-alginate microbeads injected intraportally[J]. Transplant Proc, 2004, 36(4): 1199-1200.
[15] Li Y, Meng H, Liu Y, et al. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering[J]. ScientificWorldJournal, 2015, 2015: 685690.
[16] Yan J, Yang L, Wang G, et al. Biocompatibility evaluation of chitosan-based injectable hydrogels for the culturing mice mesenchymal stem cells in vitro[J]. J Biomater Appl, 2010, 24(7): 625-637.
[17] Zhao M, Chen Z, Liu K, et al. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes[J]. J Zhejiang Univ Sci B, 2015, 16(11): 914-923.
[18] Du Z, Zhang Y, Lang M. Synthesis of functionalized Pluronic-b-poly(ε-caprolactone)and the comparative study of their pendant groups on the cellular internalization behavior[J]. J Mater Sci Mater Med, 2015, 26(4): 171.
[19] Liu H, Xiao Y, Xu H, et al. Reversible thermo-sensitivity induced from varying the Hydrogen bonding between the side residues of rationally designed polypeptides[J]. Chem Commun(Camb), 2015, 51(50): 10174-10177.
[20] Rowland CR, Lennon DP, Caplan AI, et al. The effects of crosslinking of scaffolds engineered from cartilage ECM on the chondrogenic differentiation of MSCs[J]. Biomaterials, 2013, 34(23): 5802-5812.
[21] Benders KE, van Weeren PR, Badylak SF, et al. Extracellular matrix scaffolds for cartilage and bone regeneration[J]. Trends Biotechnol, 2013, 31(3): 169-176.
[22] Fatimi A, Tassin JF, Quillard S, et al. The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices[J]. Biomaterials, 2008, 29(5): 533-543.
[23] Xu Y, Zhang J, Ma Y, et al. The role of adipose-derived stromal cells and hydroxypropylmethylcellulose in engineering cartilage tissue in vivo[J]. Cytotechnology, 2014, 66(5): 779-790.