索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]黄晶焕,李晓林.体外冲击波疗法治疗骨不连研究进展[J].国际骨科学杂志,2018,01:17-20.
点击复制

体外冲击波疗法治疗骨不连研究进展(PDF)

《国际骨科学杂志》[ISSN:1673-7083/CN:31-1952/R]

期数:
2018年01期
页码:
17-20
栏目:
综述
出版日期:
2018-01-30

文章信息/Info

Title:
-
作者:
黄晶焕李晓林
200233, 上海交通大学附属第六人民医院骨科
Author(s):
-
关键词:
骨不连 体外冲击波疗法 骨折愈合
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-7083.2018.01.005
文献标识码:
A
摘要:
体外冲击波疗法(ESWT)应用于骨不连的治疗已有几十年历史,但ESWT促进骨不连愈合的生物学机制仍不明确。ESWT治疗骨不连的生物学机制可概括为2方面:①通过机械传导使陈旧骨痂微骨折,形成骨膜下血肿,促进生物活性因子释放以重新激活骨折愈合机制; ②重新平衡成骨细胞和破骨细胞活性并促进骨折部位血管新生以加速骨不连愈合。ESWT治疗骨不连在临床上已获得广泛认可,但ESWT治疗骨不连适用范围较窄,治疗方案和原则尚未统一,各临床研究中心治疗效果也差异较大。现在研究认为,ESWT治疗骨不连应遵循尽早治疗、多点治疗及分次多疗程治疗,治疗能量应以患者能承受的最大限度为宜。
Abstract:
-

参考文献/References

[1] d’Agostino MC, Craig K, Tibalt E, et al. Shock wave as biological therapeutic tool: from mechanical stimulation to recovery and healing, through mechanotransduction[J]. Int J Surg, 2015, 24(Pt B): 147-153.
[2] Goldmann WH. Mechanosensation: a basic cellular process[J]. Prog Mol Biol Transl Sci, 2014, 126: 75-102.
[3] Jansen KA, Donato DM, Balcioglu HE, et al. A guide to mechanobiology: where biology and physics meet[J]. Biochim Biophys Acta, 2015, 1853(11 Pt B): 3043-3052.
[4] d’Agostino MC, Frairia R, Romeo P, et al. Extracorporeal shockwaves as regenerative therapy in orthopedic traumatology: a narrative review from basic research to clinical practice[J]. J Biol Regul Homeost Agents, 2016, 30(2): 323-332.
[5] Wang CJ, Yang KD, Ko JY, et al. The effects of shockwave on bone healing and systemic concentrations of nitric oxide(NO), TGF-beta1, VEGF and BMP-2 in long bone non-unions[J]. Nitric Oxide, 2009, 20(4): 298-303.
[6] Gadomski BC, McGilvray KC, Easley JT, et al. An investigation of shock wave therapy and low-intensity pulsed ultrasound on fracture healing under reduced loading conditions in an ovine model[J]. J Orthop Res, 2017, [Epub ahead of print].
[7] Dias dos Santos PR, De Medeiros VP, Freire Martins de Moura JP, et al. Effects of shock wave therapy on glycosaminoglycan expression during bone healing[J]. Int J Surg, 2015, 24(Pt B): 120-123.
[8] Holfeld J, Tepek?ylü C, Blunder S, et al. Low energy shock wave therapy induces angiogenesis in acute hind-limb ischemia via VEGF receptor 2 phosphorylation[J]. PLoS One, 2014, 9(8): e103982.
[9] Goertz O, Lauer H, Hirsch T, et al. Extracorporeal shock waves improve angiogenesis after full thickness burn[J]. Burns, 2012, 38(7): 1010-1018.
[10] Alunni G, Marra S, Meynet I, et al. The beneficial effect of extracorporeal shockwave myocardial revascularization in patients with refractory angina[J]. Cardiovasc Revasc Med, 2015, 16(1): 6-11.
[11] Goertz O, Hauser J, Hirsch T, et al. Short-term effects of extracorporeal shock waves on microcirculation[J]. J Surg Res, 2015, 194(1): 304-311.
[12] Yahata K, Kanno H, Ozawa H, et al. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury[J]. J Neurosurg Spine, 2016, 25(6): 745-755.
[13] Yamaya S, Ozawa H, Kanno H, et al. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury[J]. J Neurosurg, 2014, 121(6): 1514-1525.
[14] Ha CH, Kim S, Chung J, et al. Extracorporeal shock wave stimulates expression of the angiogenic genes via mechanosensory complex in endothelial cells: mimetic effect of fluid shear stress in endothelial cells[J]. Int J Cardiol, 2013, 168(4): 4168-4177.
[15] Obi S, Yamamoto K, Ando J. Effects of shear stress on endothelial progenitor cells[J]. J Biomed Nanotechnol, 2014, 10(10, SI): 2586-2597.
[16] Holfeld J, Tepek?ylü C, Kozaryn R, et al. Shockwave therapy differentially stimulates endothelial cells: implications on the control of inflammation via toll-Like receptor 3[J]. Inflammation, 2014, 37(1): 65-70.
[17] Huang TH, Sun CK, Chen YL, et al. Shock wave enhances angiogenesis through VEGFR2 activation and recycling[J]. Mol Med, 2016, [Epub ahead of print].
[18] Holfeld J, Tepek?ylü C, Reissig C, et al. Toll-like receptor 3 signalling mediates angiogenic response upon shock wave treatment of ischaemic muscle[J]. Cardiovasc Res, 2016, 109(2): 331-343.
[19] Lobenwein D, Tepek?ylü C, Kozaryn R, et al. Shock wave treatment protects from neuronal degeneration via a toll-like receptor 3 dependent mechanism: implications of a first-ever causal treatment for ischemic spinal cord injury[J]. J Am Heart Assoc, 2015, 4(10): e002440.
[20] Tepek?ylü C, Lobenwein D, Urbschat A, et al. Shock wave treatment after hindlimb ischaemia results in increased perfusion and M2 macrophage presence[J]. J Tissue Eng Regen Med, 2016, [Epub ahead of print].
[21] Shao PL, Chiu CC, Yuen CM, et al. Shock wave therapy effectively attenuates inflammation in rat carotid artery following endothelial denudation by balloon catheter[J]. Cardiology, 2010, 115(2): 130-144.
[22] Aschermann I, Noor S, Venturelli S, et al. Extracorporal shock waves activate migration, proliferation and inflammatory pathways in fibroblasts and keratinocytes, and improve wound healing in an open-label, single-arm study in patients with therapy-refractory chronic leg ulcers[J]. Cell Physiol Biochem, 2017, 41(3): 890-906.
[23] Cai Z, Falkensammer F, Andrukhov O, et al. Effects of shock waves on expression of IL-6, IL-8, MCP-1, and TNF-α expression by human periodontal ligament fibroblasts: an in vitro study[J]. Med Sci Monit, 2016, 22: 914-921.
[24] Muzio G, Martinasso G, Baino F, et al. Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic[J]. J Biomater Appl, 2014, 29(5): 728-736.
[25] Cacchio A, De Blasis E, Rosa F, et al. Response of bone turnover biochemical markers to extracorporeal shock wave therapy in the management of long-bone nonunions[J]. Clin Chem, 2009, 55(1): 195-196.
[26] Huang HM, Li XL, Tu SQ, et al. Effects of roughly focused extracorporeal shock waves therapy on the expressions of bone morphogenetic protein-2 and osteoprotegerin in osteoporotic fracture in rats[J]. Chin Med J(Engl), 2016, 129(21): 2567-2575.
[27] Zhao Y, Wang JB, Wang MW, et al. Activation of bone marrow-derived mesenchymal stromal cells a new mechanism of defocused low-energy shock wave in regenerative medicine[J]. Cytotherapy, 2013, 15(12): 1449-1457.
[28] Yang YM, Zhang H, Liao WX, et al. Effects of shock wave on the proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2017, 25(1): 209-213.
[29] Ma HZ, Zhou DS, Li D, et al. A histomorphometric study of necrotic femoral head in rabbits treated with extracorporeal shock waves[J]. J Phys Ther Sci, 2017, 29(1): 24-28.
[30] Zhai L, Sun N, Zhang B, et al. Effects of focused extracorporeal shock waves on bone marrow mesenchymal stem cells in patients with avascular necrosis of the femoral head[J]. Ultrasound Med Biol, 2016, 42(3): 753-762.
[31] Weihs AM, Fuchs C, Teuschl AH, et al. Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulated kinase(ERK)activation[J]. J Biol Chem, 2014, 289(39): 27090-27104.
[32] Xu JK, Chen HJ, Li XD, et al. Optimal intensity shock wave promotes the adhesion and migration of rat osteoblasts via integrin β1-mediated expression of phosphorylated focal adhesion kinase[J]. J Biol Chem, 2012, 287(31): 26200-26212.
[33] Sukubo NG, Tibalt E, Respizzi S, et al. Effect of shock waves on macrophages: a possible role in tissue regeneration and remodeling[J]. Int J Surg, 2015, 24(Pt B): 124-130.
[34] Mittermayr R, Antonic V, Hartinger J, et al. Extracorporeal shock wave therapy(ESWT)for wound healing: technology, mechanisms, and clinical efficacy[J]. Wound Repair Regen, 2012, 20(4): 456-465.
[35] Furia JP, Juliano PJ, Wade AM, et al. Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures[J]. J Bone Joint Surg Am, 2010, 92(4): 846-854.
[36] Alvarez RG, Cincere B, Channappa CA, et al. Extracorporeal shock wave treatment of Non- or delayed union of proximal metatarsal fractures[J]. Foot Ankle Int, 2011, 32(8): 746-754.
[37] Notarnicola A, Moretti L, Tafuri S, et al. Extracorporeal shockwaves versus surgery in the treatment of pseudoarthrosis of the carpal scaphoid[J]. Ultrasound Med Biol, 2010, 36(8): 1306-1313.
[38] Cacchio A, Giordano L, Colafarina O, et al. Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions[J]. J Bone Joint Surg Am, 2009, 91(11): 2589-2597.
[39] Zhai L, Ma XL, Jiang C, et al. Human autologous mesenchymal stem cells with extracorporeal shock wave therapy for nonunion of long bones[J]. Indian J Orthop, 2016, 50(5): 543-550.
[40] Schaden W, Mittermayr R, Haffner N, et al. Extracorporeal shockwave therapy(ESWT): first choice treatment of fracture non-unions?[J]. Int J Surg, 2015, 24(Pt B): 179-183.
[41] Kuo SJ, Su IC, Wang CJ, et al. Extracorporeal shockwave therapy(ESWT)in the treatment of atrophic non-unions of femoral shaft fractures[J]. Int J Surg, 2015, 24(Pt B): 131-134.
[42] Gerdesmeyer L, Schaden W, Besch L, et al. Osteogenetic effect of extracorporeal shock waves in human[J]. Int J Surg, 2015, 24(Pt B): 115-119.
[43] Kieves NR, MacKay CS, Adducci K, et al. High energy focused shock wave therapy accelerates bone healing. A blinded, prospective, randomized canine clinical trial[J]. Vet Comp Orthop Traumatol, 2015, 28(6): 425-432.
[44] Wang CJ, Chen HS, Chen CE, et al. Treatment of nonunions of long bone fractures with shock waves [J]. Clin Orthop Relat Res, 2001, 387: 95-101.
[45] Wang CJ, Liu HC, Fu TH. The effects of extracorporeal shockwave on acute high-energy long bone fractures of the lower extremity[J]. Arch Orthop Trauma Surg, 2007, 127(2): 137-142.
[46] Bara T, Synder M. Nine-years experience with the use of shock waves for treatment of bone union disturbances[J]. Ortop Traumatol Rehabil, 2007, 9(3): 254-258.
[47] Ayeni OR, Busse JW, Bhandari M. Using extracorporeal shock-wave therapy for healing long-bone nonunions[J]. Clin J Sport Med, 2011, 21(1): 74-75.
[48] Alkhawashki HM. Shock wave therapy of fracture nonunion[J]. Injury, 2015, 46(11): 2248-2252.
[49] Romeo P, Lavanga V, Pagani D, et al. Extracorporeal shock wave therapy in musculoskeletal disorders: a review[J]. Med Princ Pract, 2014, 23(1): 7-13.
[50] Ioppolo F, Rompe JD, Furia JP, et al. Clinical application of shock wave therapy(SWT)in musculoskeletal disorders[J]. Eur J Phys Rehabil Med, 2014, 50(2): 217-230.
[51] Saggini R, Di Stefano A, Saggini A, et al. Clinical application of shock wave therapy in musculoskeletal disorders: part Ⅰ[J]. J Biol Regul Homeost Agents, 2015, 29(3): 533-545.
[52] Schmitz C, Csaszar NB, Milz SA, et al. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database[J]. Br Med Bull, 2015, 116(1): 115-138.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金(81071501)
通信作者: 李晓林 E-mail: lixiaolin@sjtu.edu.cn
更新日期/Last Update: 2018-01-30