索引超出了数组界限。
[1] d’Agostino MC, Craig K, Tibalt E, et al. Shock wave as biological therapeutic tool: from mechanical stimulation to recovery and healing, through mechanotransduction[J]. Int J Surg, 2015, 24(Pt B): 147-153.
[2] Goldmann WH. Mechanosensation: a basic cellular process[J]. Prog Mol Biol Transl Sci, 2014, 126: 75-102.
[3] Jansen KA, Donato DM, Balcioglu HE, et al. A guide to mechanobiology: where biology and physics meet[J]. Biochim Biophys Acta, 2015, 1853(11 Pt B): 3043-3052.
[4] d’Agostino MC, Frairia R, Romeo P, et al. Extracorporeal shockwaves as regenerative therapy in orthopedic traumatology: a narrative review from basic research to clinical practice[J]. J Biol Regul Homeost Agents, 2016, 30(2): 323-332.
[5] Wang CJ, Yang KD, Ko JY, et al. The effects of shockwave on bone healing and systemic concentrations of nitric oxide(NO), TGF-beta1, VEGF and BMP-2 in long bone non-unions[J]. Nitric Oxide, 2009, 20(4): 298-303.
[6] Gadomski BC, McGilvray KC, Easley JT, et al. An investigation of shock wave therapy and low-intensity pulsed ultrasound on fracture healing under reduced loading conditions in an ovine model[J]. J Orthop Res, 2017, [Epub ahead of print].
[7] Dias dos Santos PR, De Medeiros VP, Freire Martins de Moura JP, et al. Effects of shock wave therapy on glycosaminoglycan expression during bone healing[J]. Int J Surg, 2015, 24(Pt B): 120-123.
[8] Holfeld J, Tepek?ylü C, Blunder S, et al. Low energy shock wave therapy induces angiogenesis in acute hind-limb ischemia via VEGF receptor 2 phosphorylation[J]. PLoS One, 2014, 9(8): e103982.
[9] Goertz O, Lauer H, Hirsch T, et al. Extracorporeal shock waves improve angiogenesis after full thickness burn[J]. Burns, 2012, 38(7): 1010-1018.
[10] Alunni G, Marra S, Meynet I, et al. The beneficial effect of extracorporeal shockwave myocardial revascularization in patients with refractory angina[J]. Cardiovasc Revasc Med, 2015, 16(1): 6-11.
[11] Goertz O, Hauser J, Hirsch T, et al. Short-term effects of extracorporeal shock waves on microcirculation[J]. J Surg Res, 2015, 194(1): 304-311.
[12] Yahata K, Kanno H, Ozawa H, et al. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury[J]. J Neurosurg Spine, 2016, 25(6): 745-755.
[13] Yamaya S, Ozawa H, Kanno H, et al. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury[J]. J Neurosurg, 2014, 121(6): 1514-1525.
[14] Ha CH, Kim S, Chung J, et al. Extracorporeal shock wave stimulates expression of the angiogenic genes via mechanosensory complex in endothelial cells: mimetic effect of fluid shear stress in endothelial cells[J]. Int J Cardiol, 2013, 168(4): 4168-4177.
[15] Obi S, Yamamoto K, Ando J. Effects of shear stress on endothelial progenitor cells[J]. J Biomed Nanotechnol, 2014, 10(10, SI): 2586-2597.
[16] Holfeld J, Tepek?ylü C, Kozaryn R, et al. Shockwave therapy differentially stimulates endothelial cells: implications on the control of inflammation via toll-Like receptor 3[J]. Inflammation, 2014, 37(1): 65-70.
[17] Huang TH, Sun CK, Chen YL, et al. Shock wave enhances angiogenesis through VEGFR2 activation and recycling[J]. Mol Med, 2016, [Epub ahead of print].
[18] Holfeld J, Tepek?ylü C, Reissig C, et al. Toll-like receptor 3 signalling mediates angiogenic response upon shock wave treatment of ischaemic muscle[J]. Cardiovasc Res, 2016, 109(2): 331-343.
[19] Lobenwein D, Tepek?ylü C, Kozaryn R, et al. Shock wave treatment protects from neuronal degeneration via a toll-like receptor 3 dependent mechanism: implications of a first-ever causal treatment for ischemic spinal cord injury[J]. J Am Heart Assoc, 2015, 4(10): e002440.
[20] Tepek?ylü C, Lobenwein D, Urbschat A, et al. Shock wave treatment after hindlimb ischaemia results in increased perfusion and M2 macrophage presence[J]. J Tissue Eng Regen Med, 2016, [Epub ahead of print].
[21] Shao PL, Chiu CC, Yuen CM, et al. Shock wave therapy effectively attenuates inflammation in rat carotid artery following endothelial denudation by balloon catheter[J]. Cardiology, 2010, 115(2): 130-144.
[22] Aschermann I, Noor S, Venturelli S, et al. Extracorporal shock waves activate migration, proliferation and inflammatory pathways in fibroblasts and keratinocytes, and improve wound healing in an open-label, single-arm study in patients with therapy-refractory chronic leg ulcers[J]. Cell Physiol Biochem, 2017, 41(3): 890-906.
[23] Cai Z, Falkensammer F, Andrukhov O, et al. Effects of shock waves on expression of IL-6, IL-8, MCP-1, and TNF-α expression by human periodontal ligament fibroblasts: an in vitro study[J]. Med Sci Monit, 2016, 22: 914-921.
[24] Muzio G, Martinasso G, Baino F, et al. Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic[J]. J Biomater Appl, 2014, 29(5): 728-736.
[25] Cacchio A, De Blasis E, Rosa F, et al. Response of bone turnover biochemical markers to extracorporeal shock wave therapy in the management of long-bone nonunions[J]. Clin Chem, 2009, 55(1): 195-196.
[26] Huang HM, Li XL, Tu SQ, et al. Effects of roughly focused extracorporeal shock waves therapy on the expressions of bone morphogenetic protein-2 and osteoprotegerin in osteoporotic fracture in rats[J]. Chin Med J(Engl), 2016, 129(21): 2567-2575.
[27] Zhao Y, Wang JB, Wang MW, et al. Activation of bone marrow-derived mesenchymal stromal cells a new mechanism of defocused low-energy shock wave in regenerative medicine[J]. Cytotherapy, 2013, 15(12): 1449-1457.
[28] Yang YM, Zhang H, Liao WX, et al. Effects of shock wave on the proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2017, 25(1): 209-213.
[29] Ma HZ, Zhou DS, Li D, et al. A histomorphometric study of necrotic femoral head in rabbits treated with extracorporeal shock waves[J]. J Phys Ther Sci, 2017, 29(1): 24-28.
[30] Zhai L, Sun N, Zhang B, et al. Effects of focused extracorporeal shock waves on bone marrow mesenchymal stem cells in patients with avascular necrosis of the femoral head[J]. Ultrasound Med Biol, 2016, 42(3): 753-762.
[31] Weihs AM, Fuchs C, Teuschl AH, et al. Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulated kinase(ERK)activation[J]. J Biol Chem, 2014, 289(39): 27090-27104.
[32] Xu JK, Chen HJ, Li XD, et al. Optimal intensity shock wave promotes the adhesion and migration of rat osteoblasts via integrin β1-mediated expression of phosphorylated focal adhesion kinase[J]. J Biol Chem, 2012, 287(31): 26200-26212.
[33] Sukubo NG, Tibalt E, Respizzi S, et al. Effect of shock waves on macrophages: a possible role in tissue regeneration and remodeling[J]. Int J Surg, 2015, 24(Pt B): 124-130.
[34] Mittermayr R, Antonic V, Hartinger J, et al. Extracorporeal shock wave therapy(ESWT)for wound healing: technology, mechanisms, and clinical efficacy[J]. Wound Repair Regen, 2012, 20(4): 456-465.
[35] Furia JP, Juliano PJ, Wade AM, et al. Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures[J]. J Bone Joint Surg Am, 2010, 92(4): 846-854.
[36] Alvarez RG, Cincere B, Channappa CA, et al. Extracorporeal shock wave treatment of Non- or delayed union of proximal metatarsal fractures[J]. Foot Ankle Int, 2011, 32(8): 746-754.
[37] Notarnicola A, Moretti L, Tafuri S, et al. Extracorporeal shockwaves versus surgery in the treatment of pseudoarthrosis of the carpal scaphoid[J]. Ultrasound Med Biol, 2010, 36(8): 1306-1313.
[38] Cacchio A, Giordano L, Colafarina O, et al. Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions[J]. J Bone Joint Surg Am, 2009, 91(11): 2589-2597.
[39] Zhai L, Ma XL, Jiang C, et al. Human autologous mesenchymal stem cells with extracorporeal shock wave therapy for nonunion of long bones[J]. Indian J Orthop, 2016, 50(5): 543-550.
[40] Schaden W, Mittermayr R, Haffner N, et al. Extracorporeal shockwave therapy(ESWT): first choice treatment of fracture non-unions?[J]. Int J Surg, 2015, 24(Pt B): 179-183.
[41] Kuo SJ, Su IC, Wang CJ, et al. Extracorporeal shockwave therapy(ESWT)in the treatment of atrophic non-unions of femoral shaft fractures[J]. Int J Surg, 2015, 24(Pt B): 131-134.
[42] Gerdesmeyer L, Schaden W, Besch L, et al. Osteogenetic effect of extracorporeal shock waves in human[J]. Int J Surg, 2015, 24(Pt B): 115-119.
[43] Kieves NR, MacKay CS, Adducci K, et al. High energy focused shock wave therapy accelerates bone healing. A blinded, prospective, randomized canine clinical trial[J]. Vet Comp Orthop Traumatol, 2015, 28(6): 425-432.
[44] Wang CJ, Chen HS, Chen CE, et al. Treatment of nonunions of long bone fractures with shock waves [J]. Clin Orthop Relat Res, 2001, 387: 95-101.
[45] Wang CJ, Liu HC, Fu TH. The effects of extracorporeal shockwave on acute high-energy long bone fractures of the lower extremity[J]. Arch Orthop Trauma Surg, 2007, 127(2): 137-142.
[46] Bara T, Synder M. Nine-years experience with the use of shock waves for treatment of bone union disturbances[J]. Ortop Traumatol Rehabil, 2007, 9(3): 254-258.
[47] Ayeni OR, Busse JW, Bhandari M. Using extracorporeal shock-wave therapy for healing long-bone nonunions[J]. Clin J Sport Med, 2011, 21(1): 74-75.
[48] Alkhawashki HM. Shock wave therapy of fracture nonunion[J]. Injury, 2015, 46(11): 2248-2252.
[49] Romeo P, Lavanga V, Pagani D, et al. Extracorporeal shock wave therapy in musculoskeletal disorders: a review[J]. Med Princ Pract, 2014, 23(1): 7-13.
[50] Ioppolo F, Rompe JD, Furia JP, et al. Clinical application of shock wave therapy(SWT)in musculoskeletal disorders[J]. Eur J Phys Rehabil Med, 2014, 50(2): 217-230.
[51] Saggini R, Di Stefano A, Saggini A, et al. Clinical application of shock wave therapy in musculoskeletal disorders: part Ⅰ[J]. J Biol Regul Homeost Agents, 2015, 29(3): 533-545.
[52] Schmitz C, Csaszar NB, Milz SA, et al. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database[J]. Br Med Bull, 2015, 116(1): 115-138.